人口统计学偏差在深度人脸识别研究中的危害

R. Vicente-Garcia, Lukasz Wandzik, Louisa Grabner, J. Krüger
{"title":"人口统计学偏差在深度人脸识别研究中的危害","authors":"R. Vicente-Garcia, Lukasz Wandzik, Louisa Grabner, J. Krüger","doi":"10.1109/ICB45273.2019.8987334","DOIUrl":null,"url":null,"abstract":"In this work we demonstrate the existence of demographic bias in the face representations of currently popular deep-learning-based face recognition models, exposing a bad research and development practice that may lead to a systematic discrimination of certain demographic groups in critical scenarios like automated border control. Furthermore, through the simulation of the template morphing attack, we reveal significant security risks that derive from demographic bias in current deep face models. This widely ignored problem poses important questions on fairness and accountability in face recognition.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"The Harms of Demographic Bias in Deep Face Recognition Research\",\"authors\":\"R. Vicente-Garcia, Lukasz Wandzik, Louisa Grabner, J. Krüger\",\"doi\":\"10.1109/ICB45273.2019.8987334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we demonstrate the existence of demographic bias in the face representations of currently popular deep-learning-based face recognition models, exposing a bad research and development practice that may lead to a systematic discrimination of certain demographic groups in critical scenarios like automated border control. Furthermore, through the simulation of the template morphing attack, we reveal significant security risks that derive from demographic bias in current deep face models. This widely ignored problem poses important questions on fairness and accountability in face recognition.\",\"PeriodicalId\":430846,\"journal\":{\"name\":\"2019 International Conference on Biometrics (ICB)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB45273.2019.8987334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

在这项工作中,我们证明了目前流行的基于深度学习的人脸识别模型的人脸表示中存在人口统计学偏差,暴露了一种糟糕的研究和开发实践,可能导致在自动边境控制等关键场景中对某些人口统计学群体的系统性歧视。此外,通过对模板变形攻击的模拟,我们揭示了当前深度人脸模型中由于人口统计偏差而产生的重大安全风险。这个被广泛忽视的问题对人脸识别的公平性和问责制提出了重要的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Harms of Demographic Bias in Deep Face Recognition Research
In this work we demonstrate the existence of demographic bias in the face representations of currently popular deep-learning-based face recognition models, exposing a bad research and development practice that may lead to a systematic discrimination of certain demographic groups in critical scenarios like automated border control. Furthermore, through the simulation of the template morphing attack, we reveal significant security risks that derive from demographic bias in current deep face models. This widely ignored problem poses important questions on fairness and accountability in face recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信