用于机器学习分类的单维时间序列数据的特征扩展

Daeun Jung, Jungjin Lee, Hyunggon Park
{"title":"用于机器学习分类的单维时间序列数据的特征扩展","authors":"Daeun Jung, Jungjin Lee, Hyunggon Park","doi":"10.1109/ICUFN49451.2021.9528690","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a feature expansion approach for the lowest one-dimension (1-D) time series data classification problems, where the expanded features include temporal, frequency, and statistical characteristics. We show that the proposed feature expansion can improve the classification accuracy compared to conventional machine learning algorithms for data classification. This is because the expanded features enable classifiers to consider multiple dimensions which are not feasible for low dimension data. Experiment results show that the proposed feature expansion method can improve the classification performance compared to conventional machine learning algorithms for 1-D actual biosensor data.","PeriodicalId":318542,"journal":{"name":"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Feature expansion of single dimensional time series data for machine learning classification\",\"authors\":\"Daeun Jung, Jungjin Lee, Hyunggon Park\",\"doi\":\"10.1109/ICUFN49451.2021.9528690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a feature expansion approach for the lowest one-dimension (1-D) time series data classification problems, where the expanded features include temporal, frequency, and statistical characteristics. We show that the proposed feature expansion can improve the classification accuracy compared to conventional machine learning algorithms for data classification. This is because the expanded features enable classifiers to consider multiple dimensions which are not feasible for low dimension data. Experiment results show that the proposed feature expansion method can improve the classification performance compared to conventional machine learning algorithms for 1-D actual biosensor data.\",\"PeriodicalId\":318542,\"journal\":{\"name\":\"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUFN49451.2021.9528690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUFN49451.2021.9528690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一种用于最低一维(1-D)时间序列数据分类问题的特征扩展方法,其中扩展的特征包括时间特征、频率特征和统计特征。我们表明,与传统的机器学习数据分类算法相比,所提出的特征扩展可以提高分类精度。这是因为扩展的特征使分类器能够考虑多个维度,而这对于低维度数据是不可行的。实验结果表明,与传统的机器学习算法相比,所提出的特征扩展方法可以提高一维实际生物传感器数据的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature expansion of single dimensional time series data for machine learning classification
In this paper, we propose a feature expansion approach for the lowest one-dimension (1-D) time series data classification problems, where the expanded features include temporal, frequency, and statistical characteristics. We show that the proposed feature expansion can improve the classification accuracy compared to conventional machine learning algorithms for data classification. This is because the expanded features enable classifiers to consider multiple dimensions which are not feasible for low dimension data. Experiment results show that the proposed feature expansion method can improve the classification performance compared to conventional machine learning algorithms for 1-D actual biosensor data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信