{"title":"用于细粒度烹饪活动识别的食材序列变换信息学习","authors":"Atsushi Okamoto, Katsufumi Inoue, M. Yoshioka","doi":"10.1145/3552485.3554940","DOIUrl":null,"url":null,"abstract":"The goal of our research is to recognize the fine-grained cooking activities (e.g., dicing or mincing in cutting) in the egocentric videos from the sequential transformation of ingredients that are processed by the camera-wearer; these types of activities are classified according to the state of ingredients after processing, and we often utilize the same cooking utensils and similar motions in such activities. Due to the above conditions, the recognition of such activities is a challenging task in computer vision and multimedia analysis. To tackle this problem, we need to perceive the sequential state transformation of ingredients precisely. In this research, to realize this, we propose a new GAN-based network whose characteristic points are 1) we crop images around the ingredient as a preprocessing to remove the environmental information, 2) we generate intermediate images from the past and future images to obtain the sequential information in the generator network, 3) the adversarial network is employed as a discriminator to classify whether the input image is generated one or not, and 4) we employ the temporally coherent network to check the temporal smoothness of input images and to predict cooking activities by comparing the original sequential images and the generated ones. To investigate the effectiveness of our proposed method, for the first step, we especially focus on \"\\textitcutting activities \". From the experimental results with our originally prepared dataset, in this paper, we report the effectiveness of our proposed method.","PeriodicalId":338126,"journal":{"name":"Proceedings of the 1st International Workshop on Multimedia for Cooking, Eating, and related APPlications","volume":"272 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Sequential Transformation Information of Ingredients for Fine-Grained Cooking Activity Recognition\",\"authors\":\"Atsushi Okamoto, Katsufumi Inoue, M. Yoshioka\",\"doi\":\"10.1145/3552485.3554940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of our research is to recognize the fine-grained cooking activities (e.g., dicing or mincing in cutting) in the egocentric videos from the sequential transformation of ingredients that are processed by the camera-wearer; these types of activities are classified according to the state of ingredients after processing, and we often utilize the same cooking utensils and similar motions in such activities. Due to the above conditions, the recognition of such activities is a challenging task in computer vision and multimedia analysis. To tackle this problem, we need to perceive the sequential state transformation of ingredients precisely. In this research, to realize this, we propose a new GAN-based network whose characteristic points are 1) we crop images around the ingredient as a preprocessing to remove the environmental information, 2) we generate intermediate images from the past and future images to obtain the sequential information in the generator network, 3) the adversarial network is employed as a discriminator to classify whether the input image is generated one or not, and 4) we employ the temporally coherent network to check the temporal smoothness of input images and to predict cooking activities by comparing the original sequential images and the generated ones. To investigate the effectiveness of our proposed method, for the first step, we especially focus on \\\"\\\\textitcutting activities \\\". From the experimental results with our originally prepared dataset, in this paper, we report the effectiveness of our proposed method.\",\"PeriodicalId\":338126,\"journal\":{\"name\":\"Proceedings of the 1st International Workshop on Multimedia for Cooking, Eating, and related APPlications\",\"volume\":\"272 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st International Workshop on Multimedia for Cooking, Eating, and related APPlications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3552485.3554940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Workshop on Multimedia for Cooking, Eating, and related APPlications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3552485.3554940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning Sequential Transformation Information of Ingredients for Fine-Grained Cooking Activity Recognition
The goal of our research is to recognize the fine-grained cooking activities (e.g., dicing or mincing in cutting) in the egocentric videos from the sequential transformation of ingredients that are processed by the camera-wearer; these types of activities are classified according to the state of ingredients after processing, and we often utilize the same cooking utensils and similar motions in such activities. Due to the above conditions, the recognition of such activities is a challenging task in computer vision and multimedia analysis. To tackle this problem, we need to perceive the sequential state transformation of ingredients precisely. In this research, to realize this, we propose a new GAN-based network whose characteristic points are 1) we crop images around the ingredient as a preprocessing to remove the environmental information, 2) we generate intermediate images from the past and future images to obtain the sequential information in the generator network, 3) the adversarial network is employed as a discriminator to classify whether the input image is generated one or not, and 4) we employ the temporally coherent network to check the temporal smoothness of input images and to predict cooking activities by comparing the original sequential images and the generated ones. To investigate the effectiveness of our proposed method, for the first step, we especially focus on "\textitcutting activities ". From the experimental results with our originally prepared dataset, in this paper, we report the effectiveness of our proposed method.