不连续的液体

Jeong-Mo Hong, Chang-Hun Kim
{"title":"不连续的液体","authors":"Jeong-Mo Hong, Chang-Hun Kim","doi":"10.1145/1186822.1073283","DOIUrl":null,"url":null,"abstract":"At interfaces between different fluids, properties such as density, viscosity, and molecular cohesion are discontinuous. To animate small-scale details of incompressible viscous multi-phase fluids realistically, we focus on the discontinuities in the state variables that express these properties. Surface tension of both free and bubble surfaces is modeled using the jump condition in the pressure field; and discontinuities in the velocity gradient field. driven by viscosity differences, are also considered. To obtain derivatives of the pressure and velocity fields with sub-grid accuracy, they are extrapolated across interfaces using continuous variables based on physical properties. The numerical methods that we present are easy to implement and do not impact the performance of existing solvers. Small-scale fluid motions, such as capillary instability, breakup of liquid sheets, and bubbly water can all be successfully animated.","PeriodicalId":211118,"journal":{"name":"ACM SIGGRAPH 2005 Papers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"194","resultStr":"{\"title\":\"Discontinuous fluids\",\"authors\":\"Jeong-Mo Hong, Chang-Hun Kim\",\"doi\":\"10.1145/1186822.1073283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At interfaces between different fluids, properties such as density, viscosity, and molecular cohesion are discontinuous. To animate small-scale details of incompressible viscous multi-phase fluids realistically, we focus on the discontinuities in the state variables that express these properties. Surface tension of both free and bubble surfaces is modeled using the jump condition in the pressure field; and discontinuities in the velocity gradient field. driven by viscosity differences, are also considered. To obtain derivatives of the pressure and velocity fields with sub-grid accuracy, they are extrapolated across interfaces using continuous variables based on physical properties. The numerical methods that we present are easy to implement and do not impact the performance of existing solvers. Small-scale fluid motions, such as capillary instability, breakup of liquid sheets, and bubbly water can all be successfully animated.\",\"PeriodicalId\":211118,\"journal\":{\"name\":\"ACM SIGGRAPH 2005 Papers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"194\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2005 Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1186822.1073283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2005 Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1186822.1073283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 194

摘要

在不同流体之间的界面上,密度、粘度和分子内聚等性质是不连续的。为了逼真地模拟不可压缩粘性多相流体的小尺度细节,我们将重点放在表达这些性质的状态变量中的不连续上。利用压力场中的跳跃条件对自由表面和气泡表面的张力进行了建模;速度梯度场的不连续。驱动的粘度差异,也考虑。为了获得具有亚网格精度的压力场和速度场导数,采用基于物理性质的连续变量跨界面外推。我们提出的数值方法易于实现,并且不会影响现有求解器的性能。小尺度的流体运动,如毛细管不稳定、液片破裂和气泡水都可以成功地动画化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discontinuous fluids
At interfaces between different fluids, properties such as density, viscosity, and molecular cohesion are discontinuous. To animate small-scale details of incompressible viscous multi-phase fluids realistically, we focus on the discontinuities in the state variables that express these properties. Surface tension of both free and bubble surfaces is modeled using the jump condition in the pressure field; and discontinuities in the velocity gradient field. driven by viscosity differences, are also considered. To obtain derivatives of the pressure and velocity fields with sub-grid accuracy, they are extrapolated across interfaces using continuous variables based on physical properties. The numerical methods that we present are easy to implement and do not impact the performance of existing solvers. Small-scale fluid motions, such as capillary instability, breakup of liquid sheets, and bubbly water can all be successfully animated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信