Duc H. Le, T. T. Doan, S. T. Huynh, Binh T. Nguyen
{"title":"论文提交推荐系统的简单对比学习","authors":"Duc H. Le, T. T. Doan, S. T. Huynh, Binh T. Nguyen","doi":"10.48550/arXiv.2205.05940","DOIUrl":null,"url":null,"abstract":". The recommendation system plays a vital role in many areas, especially academic fields, to support researchers in submitting and increasing the acceptance of their work through the conference or journal selection process. This study proposes a transformer-based model using transfer learning as an efficient approach for the paper submission recommendation system. By combining essential information (such as the title, the abstract, and the list of keywords) with the aims & scopes of journals, the model can recommend the Top K journals that maximize the acceptance of the paper. Our model had developed through two states: (i) Fine-tuning the pre-trained language model (LM) with a simple contrastive learning framework. We utilized a simple supervised contrastive objective to fine-tune all parameters, encouraging the LM to learn the document representation effectively. (ii) The fine-tuned LM was then trained on different combinations of the features for the downstream task. This study suggests a more advanced method for enhancing the efficiency of the paper submission recommendation system compared to previous approaches when we respectively achieve 0.5173, 0.8097, 0.8862, 0.9496 for Top 1, 3, 5, 10 accuracies on the test set for combining the title, abstract, and keywords as input features. Incorpo-rating the journals’ aims and scopes, our model shows an exciting result by getting 0.5194, 0.8112, 0.8866, 0.9496 respective to Top 1, 3, 5, and 10. We provide the implementation and datasets for further reference at https://github.com/hduc-le/SimCPSR .","PeriodicalId":397879,"journal":{"name":"Asian Conference on Intelligent Information and Database Systems","volume":"551 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SimCPSR: Simple Contrastive Learning for Paper Submission Recommendation System\",\"authors\":\"Duc H. Le, T. T. Doan, S. T. Huynh, Binh T. Nguyen\",\"doi\":\"10.48550/arXiv.2205.05940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The recommendation system plays a vital role in many areas, especially academic fields, to support researchers in submitting and increasing the acceptance of their work through the conference or journal selection process. This study proposes a transformer-based model using transfer learning as an efficient approach for the paper submission recommendation system. By combining essential information (such as the title, the abstract, and the list of keywords) with the aims & scopes of journals, the model can recommend the Top K journals that maximize the acceptance of the paper. Our model had developed through two states: (i) Fine-tuning the pre-trained language model (LM) with a simple contrastive learning framework. We utilized a simple supervised contrastive objective to fine-tune all parameters, encouraging the LM to learn the document representation effectively. (ii) The fine-tuned LM was then trained on different combinations of the features for the downstream task. This study suggests a more advanced method for enhancing the efficiency of the paper submission recommendation system compared to previous approaches when we respectively achieve 0.5173, 0.8097, 0.8862, 0.9496 for Top 1, 3, 5, 10 accuracies on the test set for combining the title, abstract, and keywords as input features. Incorpo-rating the journals’ aims and scopes, our model shows an exciting result by getting 0.5194, 0.8112, 0.8866, 0.9496 respective to Top 1, 3, 5, and 10. We provide the implementation and datasets for further reference at https://github.com/hduc-le/SimCPSR .\",\"PeriodicalId\":397879,\"journal\":{\"name\":\"Asian Conference on Intelligent Information and Database Systems\",\"volume\":\"551 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Conference on Intelligent Information and Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2205.05940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Conference on Intelligent Information and Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.05940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SimCPSR: Simple Contrastive Learning for Paper Submission Recommendation System
. The recommendation system plays a vital role in many areas, especially academic fields, to support researchers in submitting and increasing the acceptance of their work through the conference or journal selection process. This study proposes a transformer-based model using transfer learning as an efficient approach for the paper submission recommendation system. By combining essential information (such as the title, the abstract, and the list of keywords) with the aims & scopes of journals, the model can recommend the Top K journals that maximize the acceptance of the paper. Our model had developed through two states: (i) Fine-tuning the pre-trained language model (LM) with a simple contrastive learning framework. We utilized a simple supervised contrastive objective to fine-tune all parameters, encouraging the LM to learn the document representation effectively. (ii) The fine-tuned LM was then trained on different combinations of the features for the downstream task. This study suggests a more advanced method for enhancing the efficiency of the paper submission recommendation system compared to previous approaches when we respectively achieve 0.5173, 0.8097, 0.8862, 0.9496 for Top 1, 3, 5, 10 accuracies on the test set for combining the title, abstract, and keywords as input features. Incorpo-rating the journals’ aims and scopes, our model shows an exciting result by getting 0.5194, 0.8112, 0.8866, 0.9496 respective to Top 1, 3, 5, and 10. We provide the implementation and datasets for further reference at https://github.com/hduc-le/SimCPSR .