机器学习控制的自适应血浆医学

Li Lin, M. Keidar
{"title":"机器学习控制的自适应血浆医学","authors":"Li Lin, M. Keidar","doi":"10.1109/icops37625.2020.9717737","DOIUrl":null,"url":null,"abstract":"Cold atmospheric plasma (CAP) medicine is a novel technology of drug delivery that potentially has diverse applications including cancer treatment, tissue generation, sterilization, and blood coagulation1. Previously, we proposed an idea of self-adaptive plasma which can automatically optimize the plasma parameters such as reactive oxygen and nitrogen species (RONS) to immune the dynamic environmental disturbance and target status2,3. As the next step of self-adaptive plasma, a machine-learning based plasma control system is required.","PeriodicalId":122132,"journal":{"name":"2020 IEEE International Conference on Plasma Science (ICOPS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine Learning Controlled Self-Adaptive Plasma Medicine\",\"authors\":\"Li Lin, M. Keidar\",\"doi\":\"10.1109/icops37625.2020.9717737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cold atmospheric plasma (CAP) medicine is a novel technology of drug delivery that potentially has diverse applications including cancer treatment, tissue generation, sterilization, and blood coagulation1. Previously, we proposed an idea of self-adaptive plasma which can automatically optimize the plasma parameters such as reactive oxygen and nitrogen species (RONS) to immune the dynamic environmental disturbance and target status2,3. As the next step of self-adaptive plasma, a machine-learning based plasma control system is required.\",\"PeriodicalId\":122132,\"journal\":{\"name\":\"2020 IEEE International Conference on Plasma Science (ICOPS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Plasma Science (ICOPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icops37625.2020.9717737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icops37625.2020.9717737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

冷大气等离子体(CAP)药物是一种新的药物输送技术,具有多种潜在应用,包括癌症治疗、组织生成、灭菌和血液凝固。此前,我们提出了一种自适应等离子体的思想,该思想可以自动优化等离子体参数,如活性氧和活性氮(RONS),以免疫动态环境干扰和目标状态2,3。作为自适应等离子体的下一步,需要一种基于机器学习的等离子体控制系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Controlled Self-Adaptive Plasma Medicine
Cold atmospheric plasma (CAP) medicine is a novel technology of drug delivery that potentially has diverse applications including cancer treatment, tissue generation, sterilization, and blood coagulation1. Previously, we proposed an idea of self-adaptive plasma which can automatically optimize the plasma parameters such as reactive oxygen and nitrogen species (RONS) to immune the dynamic environmental disturbance and target status2,3. As the next step of self-adaptive plasma, a machine-learning based plasma control system is required.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信