{"title":"将顺时针算法减少到k个长度类","authors":"Marco Ripà","doi":"10.14710/jfma.v4i1.10106","DOIUrl":null,"url":null,"abstract":"In the present paper, we consider an optimization problem related to the extension in k-dimensions of the well known 3x3 points problem by Sam Loyd. In particular, thanks to a variation of the so called “clockwise-algorithm”, we show how it is possible to visit all the 3^k points of the k-dimensional grid given by the Cartesian product of (0, 1, 2) using covering trails formed by h(k)=(3^k-1)/2 links who belong to k (Euclidean) length classes. We can do this under the additional constraint of allowing only turning points which belong to the set B(k):={(0, 3) x (0, 3) x ... x (0, 3)}.","PeriodicalId":359074,"journal":{"name":"Journal of Fundamental Mathematics and Applications (JFMA)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"REDUCING THE CLOCKWISE-ALGORITHM TO k LENGTH CLASSES\",\"authors\":\"Marco Ripà\",\"doi\":\"10.14710/jfma.v4i1.10106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, we consider an optimization problem related to the extension in k-dimensions of the well known 3x3 points problem by Sam Loyd. In particular, thanks to a variation of the so called “clockwise-algorithm”, we show how it is possible to visit all the 3^k points of the k-dimensional grid given by the Cartesian product of (0, 1, 2) using covering trails formed by h(k)=(3^k-1)/2 links who belong to k (Euclidean) length classes. We can do this under the additional constraint of allowing only turning points which belong to the set B(k):={(0, 3) x (0, 3) x ... x (0, 3)}.\",\"PeriodicalId\":359074,\"journal\":{\"name\":\"Journal of Fundamental Mathematics and Applications (JFMA)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fundamental Mathematics and Applications (JFMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/jfma.v4i1.10106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fundamental Mathematics and Applications (JFMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jfma.v4i1.10106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
REDUCING THE CLOCKWISE-ALGORITHM TO k LENGTH CLASSES
In the present paper, we consider an optimization problem related to the extension in k-dimensions of the well known 3x3 points problem by Sam Loyd. In particular, thanks to a variation of the so called “clockwise-algorithm”, we show how it is possible to visit all the 3^k points of the k-dimensional grid given by the Cartesian product of (0, 1, 2) using covering trails formed by h(k)=(3^k-1)/2 links who belong to k (Euclidean) length classes. We can do this under the additional constraint of allowing only turning points which belong to the set B(k):={(0, 3) x (0, 3) x ... x (0, 3)}.