{"title":"基于统计和机器学习技术的大涡模拟研究","authors":"Mohammed Khalid Hossen","doi":"10.38032/jea.2022.03.004","DOIUrl":null,"url":null,"abstract":"The numerical solution of Navier-Stokes (N-S) equations has been found useful in various disciplines during its development, especially in recent years. However, a large-eddy simulation method has been developed to model the subgrid-scale dissipation rate by closing the Navier-Stokes equations. Because the instantaneous and time-averaged statistic characteristics of the subgrid-scale turbulent kinetic energy and dissipation have been studied by large eddy simulation. The purpose of this study is to check the statistical and machine learning of the subgrid-scale energy dissipation. As we know that the current turbulence theory states that the vortex stretching mechanism transports energy from large to small scales and leads to a high energy dissipation rate in a turbulent flow. Hence, a vortex-stretching-based subgrid-scale model is considered regarding the square of the velocity gradient to detect the playing role of the vortex stretching mechanism. The study in this article has shown a two-step process. Considering a posteriori statistic of the velocity gradient is analyzed through higher-order statistics and joint probability density function. Secondly, a machine learning approach is studied on the same data. The results of the vortex-stretching-based subgrid-scale model are then compared with the other two dynamic subgrid models, such as the localized dynamic kinetic energy equation model and the TKE-based Deardorff model. The results suggest that the vortex-stretching-based model can detect the significant subgrid-scale dissipation of small-scale motions and predict satisfactory turbulence statistics of the velocity gradient tensor.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study of Large-eddy Simulation using Statistical and Machine Learning Techniques\",\"authors\":\"Mohammed Khalid Hossen\",\"doi\":\"10.38032/jea.2022.03.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The numerical solution of Navier-Stokes (N-S) equations has been found useful in various disciplines during its development, especially in recent years. However, a large-eddy simulation method has been developed to model the subgrid-scale dissipation rate by closing the Navier-Stokes equations. Because the instantaneous and time-averaged statistic characteristics of the subgrid-scale turbulent kinetic energy and dissipation have been studied by large eddy simulation. The purpose of this study is to check the statistical and machine learning of the subgrid-scale energy dissipation. As we know that the current turbulence theory states that the vortex stretching mechanism transports energy from large to small scales and leads to a high energy dissipation rate in a turbulent flow. Hence, a vortex-stretching-based subgrid-scale model is considered regarding the square of the velocity gradient to detect the playing role of the vortex stretching mechanism. The study in this article has shown a two-step process. Considering a posteriori statistic of the velocity gradient is analyzed through higher-order statistics and joint probability density function. Secondly, a machine learning approach is studied on the same data. The results of the vortex-stretching-based subgrid-scale model are then compared with the other two dynamic subgrid models, such as the localized dynamic kinetic energy equation model and the TKE-based Deardorff model. The results suggest that the vortex-stretching-based model can detect the significant subgrid-scale dissipation of small-scale motions and predict satisfactory turbulence statistics of the velocity gradient tensor.\",\"PeriodicalId\":292407,\"journal\":{\"name\":\"Journal of Engineering Advancements\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Advancements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.38032/jea.2022.03.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Advancements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.38032/jea.2022.03.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Study of Large-eddy Simulation using Statistical and Machine Learning Techniques
The numerical solution of Navier-Stokes (N-S) equations has been found useful in various disciplines during its development, especially in recent years. However, a large-eddy simulation method has been developed to model the subgrid-scale dissipation rate by closing the Navier-Stokes equations. Because the instantaneous and time-averaged statistic characteristics of the subgrid-scale turbulent kinetic energy and dissipation have been studied by large eddy simulation. The purpose of this study is to check the statistical and machine learning of the subgrid-scale energy dissipation. As we know that the current turbulence theory states that the vortex stretching mechanism transports energy from large to small scales and leads to a high energy dissipation rate in a turbulent flow. Hence, a vortex-stretching-based subgrid-scale model is considered regarding the square of the velocity gradient to detect the playing role of the vortex stretching mechanism. The study in this article has shown a two-step process. Considering a posteriori statistic of the velocity gradient is analyzed through higher-order statistics and joint probability density function. Secondly, a machine learning approach is studied on the same data. The results of the vortex-stretching-based subgrid-scale model are then compared with the other two dynamic subgrid models, such as the localized dynamic kinetic energy equation model and the TKE-based Deardorff model. The results suggest that the vortex-stretching-based model can detect the significant subgrid-scale dissipation of small-scale motions and predict satisfactory turbulence statistics of the velocity gradient tensor.