时尚属性检测深度模型训练实践对比分析

Mustafa Sercan Amac, Aykut Erdem, Erkut Erdem
{"title":"时尚属性检测深度模型训练实践对比分析","authors":"Mustafa Sercan Amac, Aykut Erdem, Erkut Erdem","doi":"10.1109/SIU.2019.8806278","DOIUrl":null,"url":null,"abstract":"With the rapid increase of smartphone technologies and social media apps, we live in a time where every day billions of photographs are shared by people through their personal devices, and a large amount of these photos involves person images or selfies. In this study, we investigate the problem of recognizing and classifying fashion attributes in person images. We perform extensive experiments on the StreetStyle-27k dataset with the, a recently proposed large-scale dataset collected for this purpose, in which we analyze the current best practices such as Sthochasthic Gradient Descent with Warm Restarts,Focal loss,Temperature Scaling that are generally used for effective training of deep convolutional networks. Especially, we elaborate on a specific challenge that commonly arise in in-the-wild problems such as ours, which is learning when the distribution of labels is unbalanced.The results we get with the best model is %3.67 better than StreetStyle. We hope that our results will shed some light and be useful to other researchers.","PeriodicalId":326275,"journal":{"name":"2019 27th Signal Processing and Communications Applications Conference (SIU)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Analysis of Practices in Training Deep Models for Fashion Attribute Detection\",\"authors\":\"Mustafa Sercan Amac, Aykut Erdem, Erkut Erdem\",\"doi\":\"10.1109/SIU.2019.8806278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid increase of smartphone technologies and social media apps, we live in a time where every day billions of photographs are shared by people through their personal devices, and a large amount of these photos involves person images or selfies. In this study, we investigate the problem of recognizing and classifying fashion attributes in person images. We perform extensive experiments on the StreetStyle-27k dataset with the, a recently proposed large-scale dataset collected for this purpose, in which we analyze the current best practices such as Sthochasthic Gradient Descent with Warm Restarts,Focal loss,Temperature Scaling that are generally used for effective training of deep convolutional networks. Especially, we elaborate on a specific challenge that commonly arise in in-the-wild problems such as ours, which is learning when the distribution of labels is unbalanced.The results we get with the best model is %3.67 better than StreetStyle. We hope that our results will shed some light and be useful to other researchers.\",\"PeriodicalId\":326275,\"journal\":{\"name\":\"2019 27th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 27th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2019.8806278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 27th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2019.8806278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着智能手机技术和社交媒体应用的快速发展,我们生活在一个人们每天通过个人设备分享数十亿张照片的时代,其中很大一部分照片涉及人物照片或自拍照。在本研究中,我们探讨了人物形象中时尚属性的识别和分类问题。我们在StreetStyle-27k数据集上进行了广泛的实验,其中使用了最近提出的为此目的收集的大规模数据集,我们分析了当前的最佳实践,如热重启的随机梯度下降,焦点损失,温度缩放,这些通常用于深度卷积网络的有效训练。特别地,我们详细阐述了在野外问题(如我们的问题)中通常出现的特定挑战,即学习标签分布何时不平衡。我们用最好的模型得到的结果比StreetStyle好3.67 %。我们希望我们的研究结果能对其他研究人员有所启发和帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparative Analysis of Practices in Training Deep Models for Fashion Attribute Detection
With the rapid increase of smartphone technologies and social media apps, we live in a time where every day billions of photographs are shared by people through their personal devices, and a large amount of these photos involves person images or selfies. In this study, we investigate the problem of recognizing and classifying fashion attributes in person images. We perform extensive experiments on the StreetStyle-27k dataset with the, a recently proposed large-scale dataset collected for this purpose, in which we analyze the current best practices such as Sthochasthic Gradient Descent with Warm Restarts,Focal loss,Temperature Scaling that are generally used for effective training of deep convolutional networks. Especially, we elaborate on a specific challenge that commonly arise in in-the-wild problems such as ours, which is learning when the distribution of labels is unbalanced.The results we get with the best model is %3.67 better than StreetStyle. We hope that our results will shed some light and be useful to other researchers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信