基于肌电图的手势识别中的深度学习

Panagiotis Tsinganos, Bruno Cornelis, J. Cornelis, B. Jansen, A. Skodras
{"title":"基于肌电图的手势识别中的深度学习","authors":"Panagiotis Tsinganos, Bruno Cornelis, J. Cornelis, B. Jansen, A. Skodras","doi":"10.5220/0006960201070114","DOIUrl":null,"url":null,"abstract":"In recent years, Deep Learning methods have been successfully applied to a wide range of image and speech recognition problems highly impacting other research fields. As a result, new works in biomedical engineering are directed towards the application of these methods to electromyography-based gesture recognition. In this paper, we present a brief overview of Deep Learning methods for electromyography-based hand gesture recognition along with an analysis of a modified simple model based on Convolutional Neural Networks. The proposed network yields a 3% improvement on the classification accuracy of the basic model, whereas the analysis helps in understanding the limitations of the model and exploring new ways to improve the perfor-","PeriodicalId":326453,"journal":{"name":"International Conference on Physiological Computing Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Deep Learning in EMG-based Gesture Recognition\",\"authors\":\"Panagiotis Tsinganos, Bruno Cornelis, J. Cornelis, B. Jansen, A. Skodras\",\"doi\":\"10.5220/0006960201070114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, Deep Learning methods have been successfully applied to a wide range of image and speech recognition problems highly impacting other research fields. As a result, new works in biomedical engineering are directed towards the application of these methods to electromyography-based gesture recognition. In this paper, we present a brief overview of Deep Learning methods for electromyography-based hand gesture recognition along with an analysis of a modified simple model based on Convolutional Neural Networks. The proposed network yields a 3% improvement on the classification accuracy of the basic model, whereas the analysis helps in understanding the limitations of the model and exploring new ways to improve the perfor-\",\"PeriodicalId\":326453,\"journal\":{\"name\":\"International Conference on Physiological Computing Systems\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Physiological Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0006960201070114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Physiological Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0006960201070114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

近年来,深度学习方法已成功应用于广泛的图像和语音识别问题,对其他研究领域产生了重大影响。因此,生物医学工程的新工作是将这些方法应用于基于肌电图的手势识别。在本文中,我们简要概述了基于肌电图的手势识别的深度学习方法,并分析了基于卷积神经网络的改进简单模型。提出的网络在基本模型的分类精度上提高了3%,而分析有助于理解模型的局限性并探索提高性能的新方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning in EMG-based Gesture Recognition
In recent years, Deep Learning methods have been successfully applied to a wide range of image and speech recognition problems highly impacting other research fields. As a result, new works in biomedical engineering are directed towards the application of these methods to electromyography-based gesture recognition. In this paper, we present a brief overview of Deep Learning methods for electromyography-based hand gesture recognition along with an analysis of a modified simple model based on Convolutional Neural Networks. The proposed network yields a 3% improvement on the classification accuracy of the basic model, whereas the analysis helps in understanding the limitations of the model and exploring new ways to improve the perfor-
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信