人工神经网络与约束逻辑规划的融合

Jimmy Ho-man Lee, V. Tam
{"title":"人工神经网络与约束逻辑规划的融合","authors":"Jimmy Ho-man Lee, V. Tam","doi":"10.1109/TAI.1994.346458","DOIUrl":null,"url":null,"abstract":"We present a general framework for integrating artificial neural networks (ANN) into constraint logic programming for solving constraint satisfaction problems (CSPs). This framework is realized in a novel programming language PROCLANN, which uses the standard goal reduction strategy as frontend to generate constraints for an efficient backend ANN-based constraint-solver. PROCLANN retains the simple and elegant declarative semantics of constraint logic programming. Its operational semantics is probabilistic in nature but it possesses soundness and completeness results. An initial prototype of PROCLANN is constructed and provides empirical evidence that PROCLANN compares favourably against the state of art in CLP implementations on certain hard instances of CSP.<<ETX>>","PeriodicalId":262014,"journal":{"name":"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Towards the integration of artificial neural networks and constraint logic programming\",\"authors\":\"Jimmy Ho-man Lee, V. Tam\",\"doi\":\"10.1109/TAI.1994.346458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a general framework for integrating artificial neural networks (ANN) into constraint logic programming for solving constraint satisfaction problems (CSPs). This framework is realized in a novel programming language PROCLANN, which uses the standard goal reduction strategy as frontend to generate constraints for an efficient backend ANN-based constraint-solver. PROCLANN retains the simple and elegant declarative semantics of constraint logic programming. Its operational semantics is probabilistic in nature but it possesses soundness and completeness results. An initial prototype of PROCLANN is constructed and provides empirical evidence that PROCLANN compares favourably against the state of art in CLP implementations on certain hard instances of CSP.<<ETX>>\",\"PeriodicalId\":262014,\"journal\":{\"name\":\"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1994.346458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1994.346458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一个将人工神经网络(ANN)集成到约束逻辑规划中以解决约束满足问题(csp)的一般框架。该框架是在一种新颖的编程语言PROCLANN中实现的,该语言使用标准的目标约简策略作为前端,为高效的基于人工神经网络的后端约束求解器生成约束。PROCLANN保留了约束逻辑编程的简单而优雅的声明性语义。它的操作语义本质上是概率性的,但它具有完备性和完备性的结果。构建了PROCLANN的初始原型,并提供了经验证据,证明PROCLANN在CSP的某些硬实例上优于CLP实施的最新状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards the integration of artificial neural networks and constraint logic programming
We present a general framework for integrating artificial neural networks (ANN) into constraint logic programming for solving constraint satisfaction problems (CSPs). This framework is realized in a novel programming language PROCLANN, which uses the standard goal reduction strategy as frontend to generate constraints for an efficient backend ANN-based constraint-solver. PROCLANN retains the simple and elegant declarative semantics of constraint logic programming. Its operational semantics is probabilistic in nature but it possesses soundness and completeness results. An initial prototype of PROCLANN is constructed and provides empirical evidence that PROCLANN compares favourably against the state of art in CLP implementations on certain hard instances of CSP.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信