{"title":"使用多个微带谐振器的小型化无芯片RFID标签","authors":"M. Narula, Aman Kumar","doi":"10.1109/ICNETS2.2017.8067907","DOIUrl":null,"url":null,"abstract":"This paper proposes a new design to implement chipless RFID technology using rectangular ring shaped microstrip resonators of various structures to obtain different frequency signatures in the super high frequency range (2–3 GHz). It is observed that the prototype has minimal return loss and maximum resonance level has also been achieved which has been verified with graphical stimulated results and by numerical retrieval of parameters.","PeriodicalId":413865,"journal":{"name":"2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2)","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Miniaturized chipless RFID tag using multiple microstrip resonators\",\"authors\":\"M. Narula, Aman Kumar\",\"doi\":\"10.1109/ICNETS2.2017.8067907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new design to implement chipless RFID technology using rectangular ring shaped microstrip resonators of various structures to obtain different frequency signatures in the super high frequency range (2–3 GHz). It is observed that the prototype has minimal return loss and maximum resonance level has also been achieved which has been verified with graphical stimulated results and by numerical retrieval of parameters.\",\"PeriodicalId\":413865,\"journal\":{\"name\":\"2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2)\",\"volume\":\"209 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNETS2.2017.8067907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNETS2.2017.8067907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Miniaturized chipless RFID tag using multiple microstrip resonators
This paper proposes a new design to implement chipless RFID technology using rectangular ring shaped microstrip resonators of various structures to obtain different frequency signatures in the super high frequency range (2–3 GHz). It is observed that the prototype has minimal return loss and maximum resonance level has also been achieved which has been verified with graphical stimulated results and by numerical retrieval of parameters.