形状

Yuan Xu, Tiancheng He, Ruiqi Sun, Yeh-Hao Ma, Yier Jin, An Zou
{"title":"形状","authors":"Yuan Xu, Tiancheng He, Ruiqi Sun, Yeh-Hao Ma, Yier Jin, An Zou","doi":"10.1145/3508352.3549409","DOIUrl":null,"url":null,"abstract":"Despite being employed in burgeoning efforts to accelerate artificial intelligence, heterogeneous architectures have yet to be well managed with strict timing constraints. As a classic task model, multi-segment self-suspension (MSSS) has been proposed for general I/O-intensive systems and computation offloading. However, directly applying this model to heterogeneous architectures with multiple CPUs and many processing units (PEs) suffers tremendous pessimism. In this paper, we present a real-time scheduling approach, SHAPE, for general heterogeneous architectures with significant schedulability and improved utilization rate. We start with building the general task execution pattern on a heterogeneous architecture integrating multiple CPU cores and many PEs such as GPU streaming multiprocessors and FPGA IP cores. A real-time scheduling strategy and corresponding schedulability analysis are presented following the task execution pattern. Compared with state-of-the-art scheduling algorithms through comprehensive experiments on unified and versatile tasks, SHAPE improves the schedulability by 11.1% - 100%. Moreover, experiments performed on the NVIDIA GPU systems further indicate up to 70.9% of pessimism reduction can be achieved by the proposed scheduling. Since we target general heterogeneous architectures, SHAPE can be directly applied to off-the-shelf heterogeneous computing systems with guaranteed deadlines and improved schedulability.","PeriodicalId":367046,"journal":{"name":"Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"SHAPE\",\"authors\":\"Yuan Xu, Tiancheng He, Ruiqi Sun, Yeh-Hao Ma, Yier Jin, An Zou\",\"doi\":\"10.1145/3508352.3549409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite being employed in burgeoning efforts to accelerate artificial intelligence, heterogeneous architectures have yet to be well managed with strict timing constraints. As a classic task model, multi-segment self-suspension (MSSS) has been proposed for general I/O-intensive systems and computation offloading. However, directly applying this model to heterogeneous architectures with multiple CPUs and many processing units (PEs) suffers tremendous pessimism. In this paper, we present a real-time scheduling approach, SHAPE, for general heterogeneous architectures with significant schedulability and improved utilization rate. We start with building the general task execution pattern on a heterogeneous architecture integrating multiple CPU cores and many PEs such as GPU streaming multiprocessors and FPGA IP cores. A real-time scheduling strategy and corresponding schedulability analysis are presented following the task execution pattern. Compared with state-of-the-art scheduling algorithms through comprehensive experiments on unified and versatile tasks, SHAPE improves the schedulability by 11.1% - 100%. Moreover, experiments performed on the NVIDIA GPU systems further indicate up to 70.9% of pessimism reduction can be achieved by the proposed scheduling. Since we target general heterogeneous architectures, SHAPE can be directly applied to off-the-shelf heterogeneous computing systems with guaranteed deadlines and improved schedulability.\",\"PeriodicalId\":367046,\"journal\":{\"name\":\"Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508352.3549409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
SHAPE
Despite being employed in burgeoning efforts to accelerate artificial intelligence, heterogeneous architectures have yet to be well managed with strict timing constraints. As a classic task model, multi-segment self-suspension (MSSS) has been proposed for general I/O-intensive systems and computation offloading. However, directly applying this model to heterogeneous architectures with multiple CPUs and many processing units (PEs) suffers tremendous pessimism. In this paper, we present a real-time scheduling approach, SHAPE, for general heterogeneous architectures with significant schedulability and improved utilization rate. We start with building the general task execution pattern on a heterogeneous architecture integrating multiple CPU cores and many PEs such as GPU streaming multiprocessors and FPGA IP cores. A real-time scheduling strategy and corresponding schedulability analysis are presented following the task execution pattern. Compared with state-of-the-art scheduling algorithms through comprehensive experiments on unified and versatile tasks, SHAPE improves the schedulability by 11.1% - 100%. Moreover, experiments performed on the NVIDIA GPU systems further indicate up to 70.9% of pessimism reduction can be achieved by the proposed scheduling. Since we target general heterogeneous architectures, SHAPE can be directly applied to off-the-shelf heterogeneous computing systems with guaranteed deadlines and improved schedulability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信