改进径向基函数网络的学习算法,用于逼近问题和求解偏微分方程

V. Gorbachenko, Mohie M. Alqezweeni
{"title":"改进径向基函数网络的学习算法,用于逼近问题和求解偏微分方程","authors":"V. Gorbachenko, Mohie M. Alqezweeni","doi":"10.1109/ICAEM.2019.8853724","DOIUrl":null,"url":null,"abstract":"The learning of radial basis functions networks for solving approximation problems and partial differential equations is considered. Realizations of the accelerated gradient of Nesterov and Le-venberg-Marquardt were proposed for learning networks, which made it possible to significantly reduce the training time.","PeriodicalId":304208,"journal":{"name":"2019 International Conference on Applied and Engineering Mathematics (ICAEM)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving algorithms for learning of radial basis functions networks for approximation problems and solving partial differential equations\",\"authors\":\"V. Gorbachenko, Mohie M. Alqezweeni\",\"doi\":\"10.1109/ICAEM.2019.8853724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The learning of radial basis functions networks for solving approximation problems and partial differential equations is considered. Realizations of the accelerated gradient of Nesterov and Le-venberg-Marquardt were proposed for learning networks, which made it possible to significantly reduce the training time.\",\"PeriodicalId\":304208,\"journal\":{\"name\":\"2019 International Conference on Applied and Engineering Mathematics (ICAEM)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Applied and Engineering Mathematics (ICAEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAEM.2019.8853724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Applied and Engineering Mathematics (ICAEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAEM.2019.8853724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了求解近似问题和偏微分方程的径向基函数网络的学习问题。在学习网络中提出了Nesterov和Le-venberg-Marquardt加速梯度的实现,使得训练时间大大缩短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving algorithms for learning of radial basis functions networks for approximation problems and solving partial differential equations
The learning of radial basis functions networks for solving approximation problems and partial differential equations is considered. Realizations of the accelerated gradient of Nesterov and Le-venberg-Marquardt were proposed for learning networks, which made it possible to significantly reduce the training time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信