语义Web上的数据库知识发现

B. Scotney, S. McClean
{"title":"语义Web上的数据库知识发现","authors":"B. Scotney, S. McClean","doi":"10.1109/SSDBM.2004.45","DOIUrl":null,"url":null,"abstract":"We provide a flexible method for knowledge discovery from semantically heterogeneous data, based on the specification of ontology mappings from the local data sources to pre-existing (superior) ontologies in an ontology server. We also provide an innovative method for the construction of a dynamic shared ontology; data integration is then carried out by minimisation of the Kullback-Leibler information divergence using the EM algorithm. The new knowledge learned by this process is potentially richer than any of the contributing data sources. We also show how the approach may be extended to knowledge discovery from a number of database attributes; association rules or Bayesian belief networks may then be induced. An architecture for a KDD system in such an environment is described; this is an extension of a previous architecture for distributed data processing that we have already implemented.","PeriodicalId":383615,"journal":{"name":"Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Knowledge discovery from databases on the semantic Web\",\"authors\":\"B. Scotney, S. McClean\",\"doi\":\"10.1109/SSDBM.2004.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a flexible method for knowledge discovery from semantically heterogeneous data, based on the specification of ontology mappings from the local data sources to pre-existing (superior) ontologies in an ontology server. We also provide an innovative method for the construction of a dynamic shared ontology; data integration is then carried out by minimisation of the Kullback-Leibler information divergence using the EM algorithm. The new knowledge learned by this process is potentially richer than any of the contributing data sources. We also show how the approach may be extended to knowledge discovery from a number of database attributes; association rules or Bayesian belief networks may then be induced. An architecture for a KDD system in such an environment is described; this is an extension of a previous architecture for distributed data processing that we have already implemented.\",\"PeriodicalId\":383615,\"journal\":{\"name\":\"Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004.\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSDBM.2004.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSDBM.2004.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们提供了一种灵活的方法来从语义异构数据中发现知识,该方法基于从本地数据源到本体服务器中已有(高级)本体的本体映射规范。提出了一种构建动态共享本体的创新方法;然后通过使用EM算法最小化Kullback-Leibler信息散度来进行数据集成。通过这个过程学到的新知识可能比任何贡献数据源都要丰富。我们还展示了如何将该方法扩展到从许多数据库属性中发现知识;关联规则或贝叶斯信念网络可以被诱导出来。描述了这种环境中KDD系统的体系结构;这是我们之前已经实现的分布式数据处理体系结构的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge discovery from databases on the semantic Web
We provide a flexible method for knowledge discovery from semantically heterogeneous data, based on the specification of ontology mappings from the local data sources to pre-existing (superior) ontologies in an ontology server. We also provide an innovative method for the construction of a dynamic shared ontology; data integration is then carried out by minimisation of the Kullback-Leibler information divergence using the EM algorithm. The new knowledge learned by this process is potentially richer than any of the contributing data sources. We also show how the approach may be extended to knowledge discovery from a number of database attributes; association rules or Bayesian belief networks may then be induced. An architecture for a KDD system in such an environment is described; this is an extension of a previous architecture for distributed data processing that we have already implemented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信