{"title":"安全3G用户认证在特设服务网络","authors":"A. Durresi, Lyn Evans, V. Paruchuri, L. Barolli","doi":"10.1109/ARES.2006.119","DOIUrl":null,"url":null,"abstract":"The convergence of cellular and IP technologies has pushed the integration of 3G and WLAN networks to the forefront. Gaining secure access to 3G services from 802.11 WLANs is a primary challenge for this new integrated wireless technology. Successful execution of 3G security algorithms can be limited to a specified area by encrypting a user's authentication challenge with spatial data defining his visited WLAN. With limited capacity to determine a user's location only to within a current cell and restrictions on accessing users' location due to privacy, 3G operators must rely on spatial data sent from visited WLANs to implement spatial authentication control. A potential risk is presented to 3G operators since no prior relationship or trust may exist with a WLAN owner. Algorithms to quantify the trust between all parties of 3G-WLAN integrated networks are presented to further secure user authentication. Ad-hoc serving networks and the trust relationships established between mobile users are explored to define stronger algorithms for 3G-WLAN user authentication.","PeriodicalId":106780,"journal":{"name":"First International Conference on Availability, Reliability and Security (ARES'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Secure 3G user authentication in adhoc serving networks\",\"authors\":\"A. Durresi, Lyn Evans, V. Paruchuri, L. Barolli\",\"doi\":\"10.1109/ARES.2006.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The convergence of cellular and IP technologies has pushed the integration of 3G and WLAN networks to the forefront. Gaining secure access to 3G services from 802.11 WLANs is a primary challenge for this new integrated wireless technology. Successful execution of 3G security algorithms can be limited to a specified area by encrypting a user's authentication challenge with spatial data defining his visited WLAN. With limited capacity to determine a user's location only to within a current cell and restrictions on accessing users' location due to privacy, 3G operators must rely on spatial data sent from visited WLANs to implement spatial authentication control. A potential risk is presented to 3G operators since no prior relationship or trust may exist with a WLAN owner. Algorithms to quantify the trust between all parties of 3G-WLAN integrated networks are presented to further secure user authentication. Ad-hoc serving networks and the trust relationships established between mobile users are explored to define stronger algorithms for 3G-WLAN user authentication.\",\"PeriodicalId\":106780,\"journal\":{\"name\":\"First International Conference on Availability, Reliability and Security (ARES'06)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First International Conference on Availability, Reliability and Security (ARES'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARES.2006.119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Conference on Availability, Reliability and Security (ARES'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARES.2006.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Secure 3G user authentication in adhoc serving networks
The convergence of cellular and IP technologies has pushed the integration of 3G and WLAN networks to the forefront. Gaining secure access to 3G services from 802.11 WLANs is a primary challenge for this new integrated wireless technology. Successful execution of 3G security algorithms can be limited to a specified area by encrypting a user's authentication challenge with spatial data defining his visited WLAN. With limited capacity to determine a user's location only to within a current cell and restrictions on accessing users' location due to privacy, 3G operators must rely on spatial data sent from visited WLANs to implement spatial authentication control. A potential risk is presented to 3G operators since no prior relationship or trust may exist with a WLAN owner. Algorithms to quantify the trust between all parties of 3G-WLAN integrated networks are presented to further secure user authentication. Ad-hoc serving networks and the trust relationships established between mobile users are explored to define stronger algorithms for 3G-WLAN user authentication.