随机矩阵优化的高维MVDR波束形成

Liusha Yang, M. Mckay, Romain Couillet
{"title":"随机矩阵优化的高维MVDR波束形成","authors":"Liusha Yang, M. Mckay, Romain Couillet","doi":"10.1109/SSP.2018.8450743","DOIUrl":null,"url":null,"abstract":"A new approach to minimum variance distortionless response (MVDR) beamforming is proposed under the assumption of simultaneously large numbers of array sensors and observations. The key to our method is the design of an inverse covariance estimator which is appropriately optimized for the MVDR application. This is obtained by exploiting spectral properties of spiked covariance models in random matrix theory. Our proposed solution is simple to implement and is shown to yield performance improvements over competing approaches.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random Matrix-Optimized High-Dimensional MVDR Beamforming\",\"authors\":\"Liusha Yang, M. Mckay, Romain Couillet\",\"doi\":\"10.1109/SSP.2018.8450743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new approach to minimum variance distortionless response (MVDR) beamforming is proposed under the assumption of simultaneously large numbers of array sensors and observations. The key to our method is the design of an inverse covariance estimator which is appropriately optimized for the MVDR application. This is obtained by exploiting spectral properties of spiked covariance models in random matrix theory. Our proposed solution is simple to implement and is shown to yield performance improvements over competing approaches.\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在大量阵列传感器和观测数据同时存在的情况下,提出了一种新的最小方差无失真响应波束形成方法。该方法的关键是设计了一个针对MVDR应用进行了适当优化的逆协方差估计器。这是利用随机矩阵理论中尖刺协方差模型的谱特性得到的。我们提出的解决方案易于实现,并且与其他竞争方法相比,可以提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random Matrix-Optimized High-Dimensional MVDR Beamforming
A new approach to minimum variance distortionless response (MVDR) beamforming is proposed under the assumption of simultaneously large numbers of array sensors and observations. The key to our method is the design of an inverse covariance estimator which is appropriately optimized for the MVDR application. This is obtained by exploiting spectral properties of spiked covariance models in random matrix theory. Our proposed solution is simple to implement and is shown to yield performance improvements over competing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信