以人类感知为重点重新审视了直方图分割

Raphael Sahann, Torsten Möller, Johanna Schmidt
{"title":"以人类感知为重点重新审视了直方图分割","authors":"Raphael Sahann, Torsten Möller, Johanna Schmidt","doi":"10.1109/VIS49827.2021.9623301","DOIUrl":null,"url":null,"abstract":"This paper presents a quantitative user study to evaluate how well users can visually perceive the underlying data distribution from a histogram representation. We used different sample and bin sizes and four different distributions (uniform, normal, bimodal, and gamma). The study results confirm that, in general, more bins correlate with fewer errors by the viewers. However, upon a certain number of bins, the error rate cannot be improved by adding more bins. By comparing our study results with the outcomes of existing mathematical models for histogram binning (e.g., Sturges’ formula, Scott’s normal reference rule, the Rice Rule, or Freedman–Diaconis’ choice), we can see that most of them overestimate the number of bins necessary to make the distribution visible to a human viewer.","PeriodicalId":387572,"journal":{"name":"2021 IEEE Visualization Conference (VIS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Histogram binning revisited with a focus on human perception\",\"authors\":\"Raphael Sahann, Torsten Möller, Johanna Schmidt\",\"doi\":\"10.1109/VIS49827.2021.9623301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a quantitative user study to evaluate how well users can visually perceive the underlying data distribution from a histogram representation. We used different sample and bin sizes and four different distributions (uniform, normal, bimodal, and gamma). The study results confirm that, in general, more bins correlate with fewer errors by the viewers. However, upon a certain number of bins, the error rate cannot be improved by adding more bins. By comparing our study results with the outcomes of existing mathematical models for histogram binning (e.g., Sturges’ formula, Scott’s normal reference rule, the Rice Rule, or Freedman–Diaconis’ choice), we can see that most of them overestimate the number of bins necessary to make the distribution visible to a human viewer.\",\"PeriodicalId\":387572,\"journal\":{\"name\":\"2021 IEEE Visualization Conference (VIS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Visualization Conference (VIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VIS49827.2021.9623301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Visualization Conference (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIS49827.2021.9623301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一项定量用户研究,以评估用户从直方图表示中直观地感知底层数据分布的程度。我们使用了不同的样本大小和四种不同的分布(均匀分布、正态分布、双峰分布和伽马分布)。研究结果证实,一般来说,更多的箱子与更少的观众错误相关。然而,在一定数量的箱子上,增加更多的箱子不能提高错误率。通过将我们的研究结果与现有的直方图分类数学模型的结果(例如,Sturges公式、Scott的正常参考规则、Rice规则或Freedman-Diaconis选择)进行比较,我们可以看到,大多数模型都高估了使人类观察者能够看到分布所需的分类数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Histogram binning revisited with a focus on human perception
This paper presents a quantitative user study to evaluate how well users can visually perceive the underlying data distribution from a histogram representation. We used different sample and bin sizes and four different distributions (uniform, normal, bimodal, and gamma). The study results confirm that, in general, more bins correlate with fewer errors by the viewers. However, upon a certain number of bins, the error rate cannot be improved by adding more bins. By comparing our study results with the outcomes of existing mathematical models for histogram binning (e.g., Sturges’ formula, Scott’s normal reference rule, the Rice Rule, or Freedman–Diaconis’ choice), we can see that most of them overestimate the number of bins necessary to make the distribution visible to a human viewer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信