基于图的西班牙语推文主题分类技术

Héctor Cordobés, Antonio Fernández, Luis F. Chiroque, Fernando Pérez, Teófilo Redondo, Agustín Santos
{"title":"基于图的西班牙语推文主题分类技术","authors":"Héctor Cordobés, Antonio Fernández, Luis F. Chiroque, Fernando Pérez, Teófilo Redondo, Agustín Santos","doi":"10.9781/ijimai.2014.254","DOIUrl":null,"url":null,"abstract":"Topic classification of texts is one of the most interesting challenges in Natural Language Processing (NLP). Topic classifiers commonly use a bag-of-words approach, in which the classifier uses (and is trained with) selected terms from the input texts. In this work we present techniques based on graph similarity to classify short texts by topic. In our classifier we build graphs from the input texts, and then use properties of these graphs to classify them. We have tested the resulting algorithm by classifying Twitter messages in Spanish among a predefined set of topics, achieving more than 70% accuracy.","PeriodicalId":143152,"journal":{"name":"Int. J. Interact. Multim. Artif. Intell.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Graph-based Techniques for Topic Classification of Tweets in Spanish\",\"authors\":\"Héctor Cordobés, Antonio Fernández, Luis F. Chiroque, Fernando Pérez, Teófilo Redondo, Agustín Santos\",\"doi\":\"10.9781/ijimai.2014.254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topic classification of texts is one of the most interesting challenges in Natural Language Processing (NLP). Topic classifiers commonly use a bag-of-words approach, in which the classifier uses (and is trained with) selected terms from the input texts. In this work we present techniques based on graph similarity to classify short texts by topic. In our classifier we build graphs from the input texts, and then use properties of these graphs to classify them. We have tested the resulting algorithm by classifying Twitter messages in Spanish among a predefined set of topics, achieving more than 70% accuracy.\",\"PeriodicalId\":143152,\"journal\":{\"name\":\"Int. J. Interact. Multim. Artif. Intell.\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Interact. Multim. Artif. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9781/ijimai.2014.254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Interact. Multim. Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9781/ijimai.2014.254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

文本的主题分类是自然语言处理(NLP)中最有趣的挑战之一。主题分类器通常使用词袋方法,在这种方法中,分类器使用(并训练)从输入文本中选择的术语。在这项工作中,我们提出了基于图相似度的按主题对短文本进行分类的技术。在我们的分类器中,我们从输入文本构建图,然后使用这些图的属性对它们进行分类。我们通过在一组预定义的主题中对西班牙语的Twitter消息进行分类,测试了生成的算法,准确率超过70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph-based Techniques for Topic Classification of Tweets in Spanish
Topic classification of texts is one of the most interesting challenges in Natural Language Processing (NLP). Topic classifiers commonly use a bag-of-words approach, in which the classifier uses (and is trained with) selected terms from the input texts. In this work we present techniques based on graph similarity to classify short texts by topic. In our classifier we build graphs from the input texts, and then use properties of these graphs to classify them. We have tested the resulting algorithm by classifying Twitter messages in Spanish among a predefined set of topics, achieving more than 70% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信