基于BERT的深度神经嵌入的上下文查询扩展模型

D. Vishwakarma, Suresh Kumar
{"title":"基于BERT的深度神经嵌入的上下文查询扩展模型","authors":"D. Vishwakarma, Suresh Kumar","doi":"10.1109/ISCON57294.2023.10111984","DOIUrl":null,"url":null,"abstract":"The amount of information available on the internet is growing exponentially. The majority of this information is ambiguous by nature, and information retrieval (IR) systems typically return unrelated information when a typical web user tries to find relevant data. In this paper, we proposed a contextual query expansion technique (CQEB), which allows us to select only relevant documents and then only relevant terms from those documents. In order to establish the connection between retrieved documents and query keywords, the CQEB method makes use of BERT based deep neural word embeddings. We compared CQEB with the Glove embedding based QE technique. Extensive testing on test datasets from CACM and CISI reveals that our suggested method, CQEB, performs better than the standard query expansion (QE) techniques. Our experimental analysis demonstrates that, in 96% of the cases, the proposed method CQEB outperforms the alternative strategies in terms of F-score.","PeriodicalId":280183,"journal":{"name":"2023 6th International Conference on Information Systems and Computer Networks (ISCON)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Contextual Query Expansion Model using BERT Based Deep Neural Embeddings\",\"authors\":\"D. Vishwakarma, Suresh Kumar\",\"doi\":\"10.1109/ISCON57294.2023.10111984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The amount of information available on the internet is growing exponentially. The majority of this information is ambiguous by nature, and information retrieval (IR) systems typically return unrelated information when a typical web user tries to find relevant data. In this paper, we proposed a contextual query expansion technique (CQEB), which allows us to select only relevant documents and then only relevant terms from those documents. In order to establish the connection between retrieved documents and query keywords, the CQEB method makes use of BERT based deep neural word embeddings. We compared CQEB with the Glove embedding based QE technique. Extensive testing on test datasets from CACM and CISI reveals that our suggested method, CQEB, performs better than the standard query expansion (QE) techniques. Our experimental analysis demonstrates that, in 96% of the cases, the proposed method CQEB outperforms the alternative strategies in terms of F-score.\",\"PeriodicalId\":280183,\"journal\":{\"name\":\"2023 6th International Conference on Information Systems and Computer Networks (ISCON)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 6th International Conference on Information Systems and Computer Networks (ISCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCON57294.2023.10111984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Conference on Information Systems and Computer Networks (ISCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCON57294.2023.10111984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

互联网上可用的信息量呈指数级增长。这些信息中的大多数本质上是模糊的,当一个典型的web用户试图查找相关数据时,信息检索(IR)系统通常返回不相关的信息。在本文中,我们提出了一种上下文查询扩展技术(CQEB),它允许我们只选择相关的文档,然后只从这些文档中选择相关的术语。为了在检索到的文档和查询关键字之间建立联系,CQEB方法利用了基于BERT的深度神经词嵌入。我们将CQEB与基于手套嵌入的QE技术进行了比较。在ccm和CISI的测试数据集上进行的大量测试表明,我们建议的方法CQEB比标准查询扩展(QE)技术性能更好。我们的实验分析表明,在96%的情况下,所提出的方法CQEB在f得分方面优于备选策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Contextual Query Expansion Model using BERT Based Deep Neural Embeddings
The amount of information available on the internet is growing exponentially. The majority of this information is ambiguous by nature, and information retrieval (IR) systems typically return unrelated information when a typical web user tries to find relevant data. In this paper, we proposed a contextual query expansion technique (CQEB), which allows us to select only relevant documents and then only relevant terms from those documents. In order to establish the connection between retrieved documents and query keywords, the CQEB method makes use of BERT based deep neural word embeddings. We compared CQEB with the Glove embedding based QE technique. Extensive testing on test datasets from CACM and CISI reveals that our suggested method, CQEB, performs better than the standard query expansion (QE) techniques. Our experimental analysis demonstrates that, in 96% of the cases, the proposed method CQEB outperforms the alternative strategies in terms of F-score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信