神经网络自适应算法在风力发电机机构调速器中的应用

Xing-jia Yao, Guang De Liu, Y. Liu, C. Zhang
{"title":"神经网络自适应算法在风力发电机机构调速器中的应用","authors":"Xing-jia Yao, Guang De Liu, Y. Liu, C. Zhang","doi":"10.1109/ICEMS12746.2007.4412248","DOIUrl":null,"url":null,"abstract":"With the requirements of the megawatt wind turbine controlling and operation stability, the new neural network PID controller based on the CMAC self-adaptive learning algorithm designed, and its self-study and self-regulating performances can fit the real-time control system control demands and smooth operation to reduce the gust strike on the wind turbine.","PeriodicalId":211729,"journal":{"name":"2007 International Conference on Electrical Machines and Systems (ICEMS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The neural network self-adaptive algorithm application on mechanism pitch-adjust system of wind turbine\",\"authors\":\"Xing-jia Yao, Guang De Liu, Y. Liu, C. Zhang\",\"doi\":\"10.1109/ICEMS12746.2007.4412248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the requirements of the megawatt wind turbine controlling and operation stability, the new neural network PID controller based on the CMAC self-adaptive learning algorithm designed, and its self-study and self-regulating performances can fit the real-time control system control demands and smooth operation to reduce the gust strike on the wind turbine.\",\"PeriodicalId\":211729,\"journal\":{\"name\":\"2007 International Conference on Electrical Machines and Systems (ICEMS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Electrical Machines and Systems (ICEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEMS12746.2007.4412248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Electrical Machines and Systems (ICEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMS12746.2007.4412248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对兆瓦级风力发电机组控制和运行稳定性的要求,设计了基于CMAC自适应学习算法的新型神经网络PID控制器,其自学习和自调节性能能够适应实时控制系统的控制需求和平稳运行,以减少阵风对风力发电机组的冲击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The neural network self-adaptive algorithm application on mechanism pitch-adjust system of wind turbine
With the requirements of the megawatt wind turbine controlling and operation stability, the new neural network PID controller based on the CMAC self-adaptive learning algorithm designed, and its self-study and self-regulating performances can fit the real-time control system control demands and smooth operation to reduce the gust strike on the wind turbine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信