基于DNN-HMM和基于短语的SMT的英语到日语口语讲座翻译系统

Norioki Goto, Kazumasa Yamamoto, S. Nakagawa
{"title":"基于DNN-HMM和基于短语的SMT的英语到日语口语讲座翻译系统","authors":"Norioki Goto, Kazumasa Yamamoto, S. Nakagawa","doi":"10.1109/ICAICTA.2015.7335357","DOIUrl":null,"url":null,"abstract":"This paper presents our scheme to translate spoken English lectures into Japanese that consists of an English automatic speech recognition system (ASR) that utilizes a deep neural network (DNN) and an English to Japanese phrase-based statistical machine translation system (SMT). We utilized an existing Wall Street Journal corpus for our acoustic model and adapted it with MIT OpenCourseWare lectures whose transcriptions we also utilized to create our language model. For the parallel corpus of our SMT system, we used TED Talks and Japanese News Article Alignment Data. Our ASR system achieved a word error rate (WER) of 21.0%, and our SMT system achieved a 3-gram base bilingual evaluation understudy (BLEU) of 16.8 for text input and 14.6 for speech input, respectively. These scores outperformed our previous system : WER = 32.1% and BLEU = 11.0.","PeriodicalId":319020,"journal":{"name":"2015 2nd International Conference on Advanced Informatics: Concepts, Theory and Applications (ICAICTA)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"English to Japanese spoken lecture translation system by using DNN-HMM and phrase-based SMT\",\"authors\":\"Norioki Goto, Kazumasa Yamamoto, S. Nakagawa\",\"doi\":\"10.1109/ICAICTA.2015.7335357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents our scheme to translate spoken English lectures into Japanese that consists of an English automatic speech recognition system (ASR) that utilizes a deep neural network (DNN) and an English to Japanese phrase-based statistical machine translation system (SMT). We utilized an existing Wall Street Journal corpus for our acoustic model and adapted it with MIT OpenCourseWare lectures whose transcriptions we also utilized to create our language model. For the parallel corpus of our SMT system, we used TED Talks and Japanese News Article Alignment Data. Our ASR system achieved a word error rate (WER) of 21.0%, and our SMT system achieved a 3-gram base bilingual evaluation understudy (BLEU) of 16.8 for text input and 14.6 for speech input, respectively. These scores outperformed our previous system : WER = 32.1% and BLEU = 11.0.\",\"PeriodicalId\":319020,\"journal\":{\"name\":\"2015 2nd International Conference on Advanced Informatics: Concepts, Theory and Applications (ICAICTA)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 2nd International Conference on Advanced Informatics: Concepts, Theory and Applications (ICAICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAICTA.2015.7335357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 2nd International Conference on Advanced Informatics: Concepts, Theory and Applications (ICAICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICTA.2015.7335357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种将英语口语讲座翻译成日语的方案,该方案由一个利用深度神经网络(DNN)的英语自动语音识别系统(ASR)和一个基于英语到日语短语的统计机器翻译系统(SMT)组成。我们利用现有的《华尔街日报》语料库作为我们的声学模型,并将其改编为麻省理工学院开放课程的讲座,我们也利用这些讲座的转录来创建我们的语言模型。对于我们的SMT系统的平行语料库,我们使用了TED演讲和日本新闻文章对齐数据。我们的ASR系统实现了21.0%的单词错误率(WER),我们的SMT系统在文本输入和语音输入方面分别实现了16.8和14.6的3克基础双语评估替补(BLEU)。这些分数优于我们之前的系统:WER = 32.1%, BLEU = 11.0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
English to Japanese spoken lecture translation system by using DNN-HMM and phrase-based SMT
This paper presents our scheme to translate spoken English lectures into Japanese that consists of an English automatic speech recognition system (ASR) that utilizes a deep neural network (DNN) and an English to Japanese phrase-based statistical machine translation system (SMT). We utilized an existing Wall Street Journal corpus for our acoustic model and adapted it with MIT OpenCourseWare lectures whose transcriptions we also utilized to create our language model. For the parallel corpus of our SMT system, we used TED Talks and Japanese News Article Alignment Data. Our ASR system achieved a word error rate (WER) of 21.0%, and our SMT system achieved a 3-gram base bilingual evaluation understudy (BLEU) of 16.8 for text input and 14.6 for speech input, respectively. These scores outperformed our previous system : WER = 32.1% and BLEU = 11.0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信