{"title":"利用WFS和科学相机的毫秒遥测技术对静止大气湍流中NCPA和系外行星图像的联合估计","authors":"A. Rodack, R. Frazin, J. Males","doi":"10.1117/12.2562890","DOIUrl":null,"url":null,"abstract":"In 2013, Frazin introduced a statistical inference algorithm that uses simultaneous millisecond exposures in the science camera (SC) and wavefront sensor (WFS) to jointly estimate this NCPA, as well as the exoplanetary image. Here, we provide an update on the advancement of the method, with a focus on the ability to compensate NCPA in real time, and an evaluation of the effect of readout noise on the contrast. Finally, we make conclusions about the practicality of implementing the algorithm on modern and future telescopes, discussing factors such as real time computational requirements and high fidelity model calibrations.","PeriodicalId":231205,"journal":{"name":"Adaptive Optics Systems VII","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Joint estimation of NCPA and exoplanetary image in stationary atmospheric turbulence using millisecond telemetry from the WFS and science camera\",\"authors\":\"A. Rodack, R. Frazin, J. Males\",\"doi\":\"10.1117/12.2562890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2013, Frazin introduced a statistical inference algorithm that uses simultaneous millisecond exposures in the science camera (SC) and wavefront sensor (WFS) to jointly estimate this NCPA, as well as the exoplanetary image. Here, we provide an update on the advancement of the method, with a focus on the ability to compensate NCPA in real time, and an evaluation of the effect of readout noise on the contrast. Finally, we make conclusions about the practicality of implementing the algorithm on modern and future telescopes, discussing factors such as real time computational requirements and high fidelity model calibrations.\",\"PeriodicalId\":231205,\"journal\":{\"name\":\"Adaptive Optics Systems VII\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adaptive Optics Systems VII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2562890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adaptive Optics Systems VII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2562890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Joint estimation of NCPA and exoplanetary image in stationary atmospheric turbulence using millisecond telemetry from the WFS and science camera
In 2013, Frazin introduced a statistical inference algorithm that uses simultaneous millisecond exposures in the science camera (SC) and wavefront sensor (WFS) to jointly estimate this NCPA, as well as the exoplanetary image. Here, we provide an update on the advancement of the method, with a focus on the ability to compensate NCPA in real time, and an evaluation of the effect of readout noise on the contrast. Finally, we make conclusions about the practicality of implementing the algorithm on modern and future telescopes, discussing factors such as real time computational requirements and high fidelity model calibrations.