排序网络的最小测试集和排序网络在无序代码自检检查器中的使用

S. Piestrak
{"title":"排序网络的最小测试集和排序网络在无序代码自检检查器中的使用","authors":"S. Piestrak","doi":"10.1109/FTCS.1990.89382","DOIUrl":null,"url":null,"abstract":"It is shown that an n-input sorting network (SN) can be used to implement all n-variable symmetric threshold functions, using the least amount of hardware. A procedure of generating the minimal test set for K.E. Batcher's SNs is presented. An upper bound is determined for the number of tests required to detect all stuck-at faults in an n-input SN; it is fewer than in similar designs used to date. Finally, it is shown that the SNs can be used to realize easily testable self-testing checkers (STCs) for m-out-of-2m codes and all J.M. Berger codes. The new STCs for m/2m codes (m>3) have the lowest gate count and require the fewest number of tests. Upper bounds are also found for the number of tests required by the new STCs for Berger codes with I information bits. For I>or=14 they require fewer gates than similar designs known to date.<<ETX>>","PeriodicalId":174189,"journal":{"name":"[1990] Digest of Papers. Fault-Tolerant Computing: 20th International Symposium","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"The minimal test set for sorting networks and the use of sorting networks in self-testing checkers for unordered codes\",\"authors\":\"S. Piestrak\",\"doi\":\"10.1109/FTCS.1990.89382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that an n-input sorting network (SN) can be used to implement all n-variable symmetric threshold functions, using the least amount of hardware. A procedure of generating the minimal test set for K.E. Batcher's SNs is presented. An upper bound is determined for the number of tests required to detect all stuck-at faults in an n-input SN; it is fewer than in similar designs used to date. Finally, it is shown that the SNs can be used to realize easily testable self-testing checkers (STCs) for m-out-of-2m codes and all J.M. Berger codes. The new STCs for m/2m codes (m>3) have the lowest gate count and require the fewest number of tests. Upper bounds are also found for the number of tests required by the new STCs for Berger codes with I information bits. For I>or=14 they require fewer gates than similar designs known to date.<<ETX>>\",\"PeriodicalId\":174189,\"journal\":{\"name\":\"[1990] Digest of Papers. Fault-Tolerant Computing: 20th International Symposium\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1990] Digest of Papers. Fault-Tolerant Computing: 20th International Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FTCS.1990.89382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Digest of Papers. Fault-Tolerant Computing: 20th International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FTCS.1990.89382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

结果表明,n输入排序网络(SN)可以用最少的硬件实现所有n变量对称阈值函数。提出了一种生成K.E. Batcher的最小测试集的方法。确定了检测n输入SN中所有卡在故障所需的测试次数的上限;它比迄今使用的类似设计要少。最后,证明了SNs可以用于实现m- of-2m码和所有J.M. Berger码的易于测试的自检检查器(STCs)。m/2m码(m>3)的新STCs具有最低的门数,并且需要最少的测试次数。对于具有1个信息位的伯杰码,还发现了新的STCs所需的测试次数的上限。对于I>或=14,它们需要比迄今为止已知的类似设计更少的门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The minimal test set for sorting networks and the use of sorting networks in self-testing checkers for unordered codes
It is shown that an n-input sorting network (SN) can be used to implement all n-variable symmetric threshold functions, using the least amount of hardware. A procedure of generating the minimal test set for K.E. Batcher's SNs is presented. An upper bound is determined for the number of tests required to detect all stuck-at faults in an n-input SN; it is fewer than in similar designs used to date. Finally, it is shown that the SNs can be used to realize easily testable self-testing checkers (STCs) for m-out-of-2m codes and all J.M. Berger codes. The new STCs for m/2m codes (m>3) have the lowest gate count and require the fewest number of tests. Upper bounds are also found for the number of tests required by the new STCs for Berger codes with I information bits. For I>or=14 they require fewer gates than similar designs known to date.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信