基于主题的德国议会发言识别

Doris Baum
{"title":"基于主题的德国议会发言识别","authors":"Doris Baum","doi":"10.1109/ASRU.2009.5372907","DOIUrl":null,"url":null,"abstract":"In the last decade, high-level features for speaker recognition have become a research focus, as they are believed to alleviate the weak point of the classical spectral/cepstral-feature-based approaches: mismatch in acoustic conditions or channel between training and test data. Identification cues such as prosody, pronunciation, and idiolect have been successfully investigated. Semantic speaker recognition, such as identifying people by the topics they frequently talk about, has not found an equal amount of attention. However, it is a promising approach, especially for broadcast data and multimedia archives, where prominent speakers can be expected to often talk about their specific subjects. This paper reports on our experiments with topic-based speaker recognition on German parliamentary speeches. Text transcripts of speeches of federal ministers were used to train speaker models based on word frequencies. For recognition, these models were applied to automatic speech recognition transcripts of parliamentary speeches and could identify the correct speaker surprisingly well, with an EER of 13.8%. Fusing this approach with a classical GMM-UBM system (with EER 14.3%) yields an improved EER of 8.6%.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Topic-based speaker recognition for German parliamentary speeches\",\"authors\":\"Doris Baum\",\"doi\":\"10.1109/ASRU.2009.5372907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last decade, high-level features for speaker recognition have become a research focus, as they are believed to alleviate the weak point of the classical spectral/cepstral-feature-based approaches: mismatch in acoustic conditions or channel between training and test data. Identification cues such as prosody, pronunciation, and idiolect have been successfully investigated. Semantic speaker recognition, such as identifying people by the topics they frequently talk about, has not found an equal amount of attention. However, it is a promising approach, especially for broadcast data and multimedia archives, where prominent speakers can be expected to often talk about their specific subjects. This paper reports on our experiments with topic-based speaker recognition on German parliamentary speeches. Text transcripts of speeches of federal ministers were used to train speaker models based on word frequencies. For recognition, these models were applied to automatic speech recognition transcripts of parliamentary speeches and could identify the correct speaker surprisingly well, with an EER of 13.8%. Fusing this approach with a classical GMM-UBM system (with EER 14.3%) yields an improved EER of 8.6%.\",\"PeriodicalId\":292194,\"journal\":{\"name\":\"2009 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2009.5372907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5372907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在过去的十年中,高级特征识别已成为一个研究热点,因为它们被认为可以缓解经典的基于频谱/倒谱特征的方法的弱点:声学条件或训练和测试数据之间的信道不匹配。识别线索,如韵律,发音,和惯用语已成功地研究。语义说话人识别,比如通过人们经常谈论的话题来识别他们,并没有得到同样多的关注。然而,这是一种很有前途的方法,特别是对于广播数据和多媒体档案,在这些领域,可以期望著名的演讲者经常谈论他们的特定主题。本文报道了我们对德国议会演讲进行基于主题的说话人识别的实验。联邦部长演讲的文本文本被用来训练基于词频的演讲者模型。在识别方面,将这些模型应用于议会演讲的自动语音识别文本,可以很好地识别出正确的说话人,EER达到13.8%。将这种方法与经典的GMM-UBM系统(等效等效系数为14.3%)融合,等效等效系数提高到8.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topic-based speaker recognition for German parliamentary speeches
In the last decade, high-level features for speaker recognition have become a research focus, as they are believed to alleviate the weak point of the classical spectral/cepstral-feature-based approaches: mismatch in acoustic conditions or channel between training and test data. Identification cues such as prosody, pronunciation, and idiolect have been successfully investigated. Semantic speaker recognition, such as identifying people by the topics they frequently talk about, has not found an equal amount of attention. However, it is a promising approach, especially for broadcast data and multimedia archives, where prominent speakers can be expected to often talk about their specific subjects. This paper reports on our experiments with topic-based speaker recognition on German parliamentary speeches. Text transcripts of speeches of federal ministers were used to train speaker models based on word frequencies. For recognition, these models were applied to automatic speech recognition transcripts of parliamentary speeches and could identify the correct speaker surprisingly well, with an EER of 13.8%. Fusing this approach with a classical GMM-UBM system (with EER 14.3%) yields an improved EER of 8.6%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信