{"title":"有效的SMQT特征在基于雪的人脸检测和字符识别任务分类","authors":"Y. Artan, A. Burry, V. Kozitsky, P. Paul","doi":"10.1109/WNYIPW.2012.6466644","DOIUrl":null,"url":null,"abstract":"Face detection using local successive mean quantization transform (SMQT) features and the sparse network of winnows (SNoW) classifier has received interest in the computer vision community due to its success under varying illumination conditions. Recent work has also demonstrated the effectiveness of this classification technique for character recognition tasks. However, heavy storage requirements of the SNoW classifier necessitate the development of efficient techniques to reduce storage and computational requirements. This study shows that the SNoW classifier built with only a limited number of distinguishing SMQT features provides comparable performance to the original dense snow classifier. Initial results using the well-known CMU-MIT facial image database and a private character database are used to demonstrate the effectiveness of the proposed method.","PeriodicalId":218110,"journal":{"name":"2012 Western New York Image Processing Workshop","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Efficient SMQT features for snow-based classification on face detection and character recognition tasks\",\"authors\":\"Y. Artan, A. Burry, V. Kozitsky, P. Paul\",\"doi\":\"10.1109/WNYIPW.2012.6466644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face detection using local successive mean quantization transform (SMQT) features and the sparse network of winnows (SNoW) classifier has received interest in the computer vision community due to its success under varying illumination conditions. Recent work has also demonstrated the effectiveness of this classification technique for character recognition tasks. However, heavy storage requirements of the SNoW classifier necessitate the development of efficient techniques to reduce storage and computational requirements. This study shows that the SNoW classifier built with only a limited number of distinguishing SMQT features provides comparable performance to the original dense snow classifier. Initial results using the well-known CMU-MIT facial image database and a private character database are used to demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":218110,\"journal\":{\"name\":\"2012 Western New York Image Processing Workshop\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Western New York Image Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WNYIPW.2012.6466644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Western New York Image Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WNYIPW.2012.6466644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient SMQT features for snow-based classification on face detection and character recognition tasks
Face detection using local successive mean quantization transform (SMQT) features and the sparse network of winnows (SNoW) classifier has received interest in the computer vision community due to its success under varying illumination conditions. Recent work has also demonstrated the effectiveness of this classification technique for character recognition tasks. However, heavy storage requirements of the SNoW classifier necessitate the development of efficient techniques to reduce storage and computational requirements. This study shows that the SNoW classifier built with only a limited number of distinguishing SMQT features provides comparable performance to the original dense snow classifier. Initial results using the well-known CMU-MIT facial image database and a private character database are used to demonstrate the effectiveness of the proposed method.