Wallis比率的一些新的最优界

Yin Chen
{"title":"Wallis比率的一些新的最优界","authors":"Yin Chen","doi":"10.9734/arjom/2023/v19i10739","DOIUrl":null,"url":null,"abstract":"Wallis ratio can be expressed as an asymptotic expansion using Stirling series and Bernoulli numbers. We prove the general inequalities for Wallis ratio for arbitrary number of terms in the asymptotic expansion. We show that the coefficients in the asymptotic expansion are the best possible.","PeriodicalId":281529,"journal":{"name":"Asian Research Journal of Mathematics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some New Optimal Bounds for Wallis Ratio\",\"authors\":\"Yin Chen\",\"doi\":\"10.9734/arjom/2023/v19i10739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wallis ratio can be expressed as an asymptotic expansion using Stirling series and Bernoulli numbers. We prove the general inequalities for Wallis ratio for arbitrary number of terms in the asymptotic expansion. We show that the coefficients in the asymptotic expansion are the best possible.\",\"PeriodicalId\":281529,\"journal\":{\"name\":\"Asian Research Journal of Mathematics\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Research Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/arjom/2023/v19i10739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Research Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/arjom/2023/v19i10739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用斯特林级数和伯努利数可以将沃利斯比表示为渐近展开式。在渐近展开式中,我们证明了任意数目项的Wallis比的一般不等式。我们证明了渐近展开式中的系数是最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some New Optimal Bounds for Wallis Ratio
Wallis ratio can be expressed as an asymptotic expansion using Stirling series and Bernoulli numbers. We prove the general inequalities for Wallis ratio for arbitrary number of terms in the asymptotic expansion. We show that the coefficients in the asymptotic expansion are the best possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信