生物医学领域问答系统的研究

Bo Xu, Hongfei Lin, Baoyan Liu
{"title":"生物医学领域问答系统的研究","authors":"Bo Xu, Hongfei Lin, Baoyan Liu","doi":"10.1109/GRC.2009.5255043","DOIUrl":null,"url":null,"abstract":"This paper focuses on setting up a question-answering oriented Biomedical Domain, and it applies several different approaches to the different processing phases. Firstly, it uses shallow parser to identify the types of questions and extract the keywords, and the keywords are expanded with UMLS for the purpose of improving the recall. Secondly, passage retrieval is performed with the expanded keywords. Lastly, in the phase of answering extracting, the approach of passage retrieval based on hotspots is presented to discover the related information with low redundancy. This QA system has been evaluated on the dataset of TREC, and the experiment results shows that it can answer the questions from biomedical domain effectively.","PeriodicalId":388774,"journal":{"name":"2009 IEEE International Conference on Granular Computing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study on question answering system for biomedical domain\",\"authors\":\"Bo Xu, Hongfei Lin, Baoyan Liu\",\"doi\":\"10.1109/GRC.2009.5255043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on setting up a question-answering oriented Biomedical Domain, and it applies several different approaches to the different processing phases. Firstly, it uses shallow parser to identify the types of questions and extract the keywords, and the keywords are expanded with UMLS for the purpose of improving the recall. Secondly, passage retrieval is performed with the expanded keywords. Lastly, in the phase of answering extracting, the approach of passage retrieval based on hotspots is presented to discover the related information with low redundancy. This QA system has been evaluated on the dataset of TREC, and the experiment results shows that it can answer the questions from biomedical domain effectively.\",\"PeriodicalId\":388774,\"journal\":{\"name\":\"2009 IEEE International Conference on Granular Computing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Granular Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GRC.2009.5255043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2009.5255043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的重点是建立一个面向问答的生物医学领域,并在不同的处理阶段应用了几种不同的方法。首先,使用浅解析器识别问题类型并提取关键词,对关键词进行UMLS扩展,以提高查全率。其次,利用扩展后的关键词进行文章检索。最后,在回答提取阶段,提出了基于热点的通道检索方法,以发现低冗余的相关信息。在TREC数据集上对该问答系统进行了测试,实验结果表明该问答系统能够有效地回答来自生物医学领域的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on question answering system for biomedical domain
This paper focuses on setting up a question-answering oriented Biomedical Domain, and it applies several different approaches to the different processing phases. Firstly, it uses shallow parser to identify the types of questions and extract the keywords, and the keywords are expanded with UMLS for the purpose of improving the recall. Secondly, passage retrieval is performed with the expanded keywords. Lastly, in the phase of answering extracting, the approach of passage retrieval based on hotspots is presented to discover the related information with low redundancy. This QA system has been evaluated on the dataset of TREC, and the experiment results shows that it can answer the questions from biomedical domain effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信