GNOSIS——用于非结构化数据流的查询驱动的多模态事件处理

Piyush Yadav, Dhaval Salwala, B. Sudharsan, E. Curry
{"title":"GNOSIS——用于非结构化数据流的查询驱动的多模态事件处理","authors":"Piyush Yadav, Dhaval Salwala, B. Sudharsan, E. Curry","doi":"10.1145/3491086.3492475","DOIUrl":null,"url":null,"abstract":"This paper presents GNOSIS, an event processing engine to detect complex event patterns over multimodal data streams. GNOSIS follows a query-driven approach where users can write complex event queries using Multimodal Event Processing Language (MEPL). The system models incoming multimodal data into an evolving Multimodal Event Knowledge Graph (MEKG) using an ensemble of deep neural network (DNN) and machine learning (ML) models and applies a neuro-symbolic approach for event matching. GNOSIS follows a serverless paradigm where its different components act as independent microservices and can be deployed across different nodes with optimized edge support. The paper demonstrates two multimodal use case queries from Occupational Health and Safety and Accessibility domain.","PeriodicalId":246858,"journal":{"name":"Proceedings of the 22nd International Middleware Conference: Demos and Posters","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GNOSIS- query-driven multimodal event processing for unstructured data streams\",\"authors\":\"Piyush Yadav, Dhaval Salwala, B. Sudharsan, E. Curry\",\"doi\":\"10.1145/3491086.3492475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents GNOSIS, an event processing engine to detect complex event patterns over multimodal data streams. GNOSIS follows a query-driven approach where users can write complex event queries using Multimodal Event Processing Language (MEPL). The system models incoming multimodal data into an evolving Multimodal Event Knowledge Graph (MEKG) using an ensemble of deep neural network (DNN) and machine learning (ML) models and applies a neuro-symbolic approach for event matching. GNOSIS follows a serverless paradigm where its different components act as independent microservices and can be deployed across different nodes with optimized edge support. The paper demonstrates two multimodal use case queries from Occupational Health and Safety and Accessibility domain.\",\"PeriodicalId\":246858,\"journal\":{\"name\":\"Proceedings of the 22nd International Middleware Conference: Demos and Posters\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd International Middleware Conference: Demos and Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3491086.3492475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd International Middleware Conference: Demos and Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3491086.3492475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个事件处理引擎GNOSIS,用于检测多模态数据流上的复杂事件模式。GNOSIS遵循查询驱动的方法,用户可以使用多模态事件处理语言(Multimodal event Processing Language, MEPL)编写复杂的事件查询。该系统使用深度神经网络(DNN)和机器学习(ML)模型的集成将传入的多模态数据建模为不断发展的多模态事件知识图(MEKG),并应用神经符号方法进行事件匹配。GNOSIS遵循无服务器范式,其中不同的组件充当独立的微服务,可以通过优化的边缘支持部署在不同的节点上。本文演示了来自职业健康与安全领域和可访问性领域的两个多模态用例查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GNOSIS- query-driven multimodal event processing for unstructured data streams
This paper presents GNOSIS, an event processing engine to detect complex event patterns over multimodal data streams. GNOSIS follows a query-driven approach where users can write complex event queries using Multimodal Event Processing Language (MEPL). The system models incoming multimodal data into an evolving Multimodal Event Knowledge Graph (MEKG) using an ensemble of deep neural network (DNN) and machine learning (ML) models and applies a neuro-symbolic approach for event matching. GNOSIS follows a serverless paradigm where its different components act as independent microservices and can be deployed across different nodes with optimized edge support. The paper demonstrates two multimodal use case queries from Occupational Health and Safety and Accessibility domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信