InAs(Sb)/GaAs亚单层量子点的原子结构和电子态

A. Lenz, Zeno Diemer, Christopher Prohl, D. Quandt, A. Strittmatter, U. W. Pohl, H. Eisele
{"title":"InAs(Sb)/GaAs亚单层量子点的原子结构和电子态","authors":"A. Lenz, Zeno Diemer, Christopher Prohl, D. Quandt, A. Strittmatter, U. W. Pohl, H. Eisele","doi":"10.1109/ICIPRM.2016.7528664","DOIUrl":null,"url":null,"abstract":"Summary form only given. Submonolayer-grown semiconductor nanostructures are promising for high power and high speed laser devices. They are formed by a cycled deposition of the active material with a thickness well below the critical thickness for Stranski-Krastanov transition and well below one monolayer (ML), alternating with several ML thick matrix material. They were successfully implemented in high speed (>25 Gbit/s) vertical-cavity surface emitting lasers operating up to 120°C. In this contribution, the structural changes upon additional supply of Sb are studied on the atomic scale using XSTM. The InAsSb agglomerations show slightly smaller sizes than equivalent submonolayer structures grown without Sb. The structural findings are in close correlation with the different band alignments of the electronic states, showing different behavior for electrons and holes.","PeriodicalId":357009,"journal":{"name":"2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic structure and electronic states of InAs(Sb)/GaAs submonolayer quantum dots\",\"authors\":\"A. Lenz, Zeno Diemer, Christopher Prohl, D. Quandt, A. Strittmatter, U. W. Pohl, H. Eisele\",\"doi\":\"10.1109/ICIPRM.2016.7528664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. Submonolayer-grown semiconductor nanostructures are promising for high power and high speed laser devices. They are formed by a cycled deposition of the active material with a thickness well below the critical thickness for Stranski-Krastanov transition and well below one monolayer (ML), alternating with several ML thick matrix material. They were successfully implemented in high speed (>25 Gbit/s) vertical-cavity surface emitting lasers operating up to 120°C. In this contribution, the structural changes upon additional supply of Sb are studied on the atomic scale using XSTM. The InAsSb agglomerations show slightly smaller sizes than equivalent submonolayer structures grown without Sb. The structural findings are in close correlation with the different band alignments of the electronic states, showing different behavior for electrons and holes.\",\"PeriodicalId\":357009,\"journal\":{\"name\":\"2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIPRM.2016.7528664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIPRM.2016.7528664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

只提供摘要形式。亚单层生长的半导体纳米结构在高功率、高速激光器件中具有广阔的应用前景。它们是由活性材料的循环沉积形成的,活性材料的厚度远低于stranski - krstanov过渡的临界厚度,远低于单层(ML),交替与几个ML厚的基体材料。它们成功地实现了高速(>25 Gbit/s)垂直腔表面发射激光器,工作温度高达120°C。本文利用XSTM在原子尺度上研究了添加Sb后的结构变化。与不含Sb的等效亚单层结构相比,InAsSb团聚体的尺寸略小。这种结构发现与电子态的不同能带排列密切相关,显示出不同的电子和空穴行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atomic structure and electronic states of InAs(Sb)/GaAs submonolayer quantum dots
Summary form only given. Submonolayer-grown semiconductor nanostructures are promising for high power and high speed laser devices. They are formed by a cycled deposition of the active material with a thickness well below the critical thickness for Stranski-Krastanov transition and well below one monolayer (ML), alternating with several ML thick matrix material. They were successfully implemented in high speed (>25 Gbit/s) vertical-cavity surface emitting lasers operating up to 120°C. In this contribution, the structural changes upon additional supply of Sb are studied on the atomic scale using XSTM. The InAsSb agglomerations show slightly smaller sizes than equivalent submonolayer structures grown without Sb. The structural findings are in close correlation with the different band alignments of the electronic states, showing different behavior for electrons and holes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信