对径向基概率神经网络的全面理解

De-shuang Huang, Wen-Bo Zhao
{"title":"对径向基概率神经网络的全面理解","authors":"De-shuang Huang, Wen-Bo Zhao","doi":"10.1109/ICOSP.2002.1180015","DOIUrl":null,"url":null,"abstract":"The paper makes a profound analysis on radial basis probabilistic neural networks (RBPNN) from the viewpoint of linear algebra. Specifically, the transformation properties and internal representations of the RBPNNs are investigated in alliance with the properties of the input samples so that one may understand and grasp the mechanisms for pattern classification and function approximation of the RBPNNs. In addition, we analyse the convergence behaviour of the output class weight vectors of the RBPNNs, which can be shown to be orthogonal as well. Finally, one example for classifying five kinds of different distribution patterns are given to further support our understandings and claims.","PeriodicalId":159807,"journal":{"name":"6th International Conference on Signal Processing, 2002.","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A comprehensive understanding for radial basis probabilistic neural networks\",\"authors\":\"De-shuang Huang, Wen-Bo Zhao\",\"doi\":\"10.1109/ICOSP.2002.1180015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper makes a profound analysis on radial basis probabilistic neural networks (RBPNN) from the viewpoint of linear algebra. Specifically, the transformation properties and internal representations of the RBPNNs are investigated in alliance with the properties of the input samples so that one may understand and grasp the mechanisms for pattern classification and function approximation of the RBPNNs. In addition, we analyse the convergence behaviour of the output class weight vectors of the RBPNNs, which can be shown to be orthogonal as well. Finally, one example for classifying five kinds of different distribution patterns are given to further support our understandings and claims.\",\"PeriodicalId\":159807,\"journal\":{\"name\":\"6th International Conference on Signal Processing, 2002.\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"6th International Conference on Signal Processing, 2002.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.2002.1180015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th International Conference on Signal Processing, 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2002.1180015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文从线性代数的角度对径向基概率神经网络(RBPNN)进行了深入的分析。具体来说,结合输入样本的性质,研究了rbpnn的变换性质和内部表示,从而可以理解和掌握rbpnn的模式分类和函数逼近机制。此外,我们分析了rbpnn的输出类权向量的收敛行为,它们也可以被证明是正交的。最后,给出了五种不同分布模式的分类实例,以进一步支持我们的理解和主张。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comprehensive understanding for radial basis probabilistic neural networks
The paper makes a profound analysis on radial basis probabilistic neural networks (RBPNN) from the viewpoint of linear algebra. Specifically, the transformation properties and internal representations of the RBPNNs are investigated in alliance with the properties of the input samples so that one may understand and grasp the mechanisms for pattern classification and function approximation of the RBPNNs. In addition, we analyse the convergence behaviour of the output class weight vectors of the RBPNNs, which can be shown to be orthogonal as well. Finally, one example for classifying five kinds of different distribution patterns are given to further support our understandings and claims.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信