基于预测数据挖掘模型的虚拟机能耗感知迁移

Albino Altomare, Eugenio Cesario, D. Talia
{"title":"基于预测数据挖掘模型的虚拟机能耗感知迁移","authors":"Albino Altomare, Eugenio Cesario, D. Talia","doi":"10.1109/PDP.2015.40","DOIUrl":null,"url":null,"abstract":"Consolidation of virtual machines (VM) is one of the key strategies used to reduce the power consumption of Cloud servers. For this reason it is extensively studied. Nevertheless, the effectiveness of a consolidation strategy strongly depends on the forecast of the VM resource needs. This paper describes the design and development of a system for energy-aware allocation of virtual machines, driven by predictive data mining models. In particular, migrations are driven by the forecast of the future computational needs (CPU, RAM) of each virtual machine, in order to efficiently allocate those on the available servers. Experimental results, performed on data of a real Cloud data centre, show encouraging benefits in terms of energy saving.","PeriodicalId":285111,"journal":{"name":"2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Energy-Aware Migration of Virtual Machines Driven by Predictive Data Mining Models\",\"authors\":\"Albino Altomare, Eugenio Cesario, D. Talia\",\"doi\":\"10.1109/PDP.2015.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consolidation of virtual machines (VM) is one of the key strategies used to reduce the power consumption of Cloud servers. For this reason it is extensively studied. Nevertheless, the effectiveness of a consolidation strategy strongly depends on the forecast of the VM resource needs. This paper describes the design and development of a system for energy-aware allocation of virtual machines, driven by predictive data mining models. In particular, migrations are driven by the forecast of the future computational needs (CPU, RAM) of each virtual machine, in order to efficiently allocate those on the available servers. Experimental results, performed on data of a real Cloud data centre, show encouraging benefits in terms of energy saving.\",\"PeriodicalId\":285111,\"journal\":{\"name\":\"2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDP.2015.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2015.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

虚拟机(VM)的整合是用于降低云服务器功耗的关键策略之一。因此,它被广泛研究。然而,整合策略的有效性很大程度上取决于对虚拟机资源需求的预测。本文介绍了一种基于预测数据挖掘模型的虚拟机能源感知分配系统的设计与开发。特别是,迁移是由对每个虚拟机的未来计算需求(CPU、RAM)的预测驱动的,以便在可用的服务器上有效地分配这些需求。在一个真实的云数据中心的数据上进行的实验结果显示,在节能方面有令人鼓舞的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-Aware Migration of Virtual Machines Driven by Predictive Data Mining Models
Consolidation of virtual machines (VM) is one of the key strategies used to reduce the power consumption of Cloud servers. For this reason it is extensively studied. Nevertheless, the effectiveness of a consolidation strategy strongly depends on the forecast of the VM resource needs. This paper describes the design and development of a system for energy-aware allocation of virtual machines, driven by predictive data mining models. In particular, migrations are driven by the forecast of the future computational needs (CPU, RAM) of each virtual machine, in order to efficiently allocate those on the available servers. Experimental results, performed on data of a real Cloud data centre, show encouraging benefits in terms of energy saving.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信