基于视觉和感官信息融合的健身监测系统

Michalis Papakostas, Theodoros Giannakopoulos, V. Karkaletsis
{"title":"基于视觉和感官信息融合的健身监测系统","authors":"Michalis Papakostas, Theodoros Giannakopoulos, V. Karkaletsis","doi":"10.1145/3056540.3076196","DOIUrl":null,"url":null,"abstract":"We present a method that recognizes exercising activities performed by a single human in the context of a real home environment. Towards this end, we combine sensorial information stemming from a smartphone accelerometer, with visual information from a simple web camera. Low-level features inspired from the audio analysis domain are used to represent the accelerometer data, while simple frame-wise features are used in the visual channel. Extensive experiments prove that the fusion approach achieves 95% of overall performance when user calibration is adopted, which is a 4% performance boosting compared to the best individual modality which is the accelerometer data.","PeriodicalId":140232,"journal":{"name":"Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments","volume":"2674 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Fitness Monitoring System based on Fusion of Visual and Sensorial Information\",\"authors\":\"Michalis Papakostas, Theodoros Giannakopoulos, V. Karkaletsis\",\"doi\":\"10.1145/3056540.3076196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method that recognizes exercising activities performed by a single human in the context of a real home environment. Towards this end, we combine sensorial information stemming from a smartphone accelerometer, with visual information from a simple web camera. Low-level features inspired from the audio analysis domain are used to represent the accelerometer data, while simple frame-wise features are used in the visual channel. Extensive experiments prove that the fusion approach achieves 95% of overall performance when user calibration is adopted, which is a 4% performance boosting compared to the best individual modality which is the accelerometer data.\",\"PeriodicalId\":140232,\"journal\":{\"name\":\"Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments\",\"volume\":\"2674 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3056540.3076196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3056540.3076196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种识别在真实家庭环境中由单个人执行的锻炼活动的方法。为此,我们将来自智能手机加速计的感官信息与来自简单网络摄像头的视觉信息结合起来。来自音频分析领域的低级特征被用来表示加速度计数据,而简单的帧特征被用于视觉通道。大量的实验证明,当采用用户校准时,融合方法达到95%的整体性能,与加速度计数据的最佳单个模态相比,性能提高了4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fitness Monitoring System based on Fusion of Visual and Sensorial Information
We present a method that recognizes exercising activities performed by a single human in the context of a real home environment. Towards this end, we combine sensorial information stemming from a smartphone accelerometer, with visual information from a simple web camera. Low-level features inspired from the audio analysis domain are used to represent the accelerometer data, while simple frame-wise features are used in the visual channel. Extensive experiments prove that the fusion approach achieves 95% of overall performance when user calibration is adopted, which is a 4% performance boosting compared to the best individual modality which is the accelerometer data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信