基于核磁共振成像的卷积神经网络脑肿瘤分割:最新分割网络的比较分析

Ahmet Furkan Bayram, Caglar Gurkan, Abdulkadir Budak, Hakan Karatas
{"title":"基于核磁共振成像的卷积神经网络脑肿瘤分割:最新分割网络的比较分析","authors":"Ahmet Furkan Bayram, Caglar Gurkan, Abdulkadir Budak, Hakan Karatas","doi":"10.34110/forecasting.1190289","DOIUrl":null,"url":null,"abstract":"The prevalence of brain tumor is quite high. Brain tumor causes critical diseases. Also, brain tumor causes a variety of symptoms in most people. This study aims to segmentation of the tumor in the brain. For this purpose, state-of-art architectures, such as UNet, Attention UNet, Residual UNet, Attention Residual UNet, Residual UNet++, Inception UNet, LinkNet, and SegNet were used for segmentation. 592 magnetic resonance (MR) images were utilized in the training and testing of segmentation architectures. In the comparative analysis, Attention UNet achieved the best predictive performance with a 0.886 dice score, 0.795 IoU score, 0.881 sensitivity, 0.993 specificity, 0.891 precision, and 0.986 accuracy.","PeriodicalId":141932,"journal":{"name":"Turkish Journal of Forecasting","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Convolutional Neural Networks for MRI-Based Brain Tumor Segmentation: A Comparative Analysis of State-of-the-Art Segmentation Networks\",\"authors\":\"Ahmet Furkan Bayram, Caglar Gurkan, Abdulkadir Budak, Hakan Karatas\",\"doi\":\"10.34110/forecasting.1190289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prevalence of brain tumor is quite high. Brain tumor causes critical diseases. Also, brain tumor causes a variety of symptoms in most people. This study aims to segmentation of the tumor in the brain. For this purpose, state-of-art architectures, such as UNet, Attention UNet, Residual UNet, Attention Residual UNet, Residual UNet++, Inception UNet, LinkNet, and SegNet were used for segmentation. 592 magnetic resonance (MR) images were utilized in the training and testing of segmentation architectures. In the comparative analysis, Attention UNet achieved the best predictive performance with a 0.886 dice score, 0.795 IoU score, 0.881 sensitivity, 0.993 specificity, 0.891 precision, and 0.986 accuracy.\",\"PeriodicalId\":141932,\"journal\":{\"name\":\"Turkish Journal of Forecasting\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Forecasting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34110/forecasting.1190289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Forecasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34110/forecasting.1190289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

脑肿瘤的发病率很高。脑瘤会导致严重的疾病。此外,脑瘤在大多数人身上会引起各种各样的症状。这项研究的目的是分割大脑中的肿瘤。为此,最先进的架构,如UNet、Attention UNet、Residual UNet、Attention Residual UNet、Residual UNet++、Inception UNet、LinkNet和SegNet被用于分段。利用592张磁共振(MR)图像进行分割架构的训练和测试。对比分析中,Attention UNet预测效果最佳,dice评分为0.886,IoU评分为0.795,灵敏度为0.881,特异性为0.993,精密度为0.891,准确度为0.986。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolutional Neural Networks for MRI-Based Brain Tumor Segmentation: A Comparative Analysis of State-of-the-Art Segmentation Networks
The prevalence of brain tumor is quite high. Brain tumor causes critical diseases. Also, brain tumor causes a variety of symptoms in most people. This study aims to segmentation of the tumor in the brain. For this purpose, state-of-art architectures, such as UNet, Attention UNet, Residual UNet, Attention Residual UNet, Residual UNet++, Inception UNet, LinkNet, and SegNet were used for segmentation. 592 magnetic resonance (MR) images were utilized in the training and testing of segmentation architectures. In the comparative analysis, Attention UNet achieved the best predictive performance with a 0.886 dice score, 0.795 IoU score, 0.881 sensitivity, 0.993 specificity, 0.891 precision, and 0.986 accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信