CNN网络的动态修剪

Fragoulis Nikolaos, Ilias Theodorakopoulos, V. Pothos, E. Vassalos
{"title":"CNN网络的动态修剪","authors":"Fragoulis Nikolaos, Ilias Theodorakopoulos, V. Pothos, E. Vassalos","doi":"10.1109/IISA.2019.8900711","DOIUrl":null,"url":null,"abstract":"A new, radical CNN dynamic pruning approach is presented in this paper, achieved by a new holistic intervention on both the CNN architecture and the training procedure, which targets to the parsimonious inference by learning to exploit and dynamically remove the redundant capacity of a CNN architecture. Our approach formulates a systematic and data-driven method for developing CNNs that are trained to eventually change size and form in real-time during inference, targeting to the smaller possible computational footprint. Results are provided for the optimal implementation on a few modern, high-end mobile computing platforms indicating a significant speed-up.","PeriodicalId":371385,"journal":{"name":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Dynamic Pruning of CNN networks\",\"authors\":\"Fragoulis Nikolaos, Ilias Theodorakopoulos, V. Pothos, E. Vassalos\",\"doi\":\"10.1109/IISA.2019.8900711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new, radical CNN dynamic pruning approach is presented in this paper, achieved by a new holistic intervention on both the CNN architecture and the training procedure, which targets to the parsimonious inference by learning to exploit and dynamically remove the redundant capacity of a CNN architecture. Our approach formulates a systematic and data-driven method for developing CNNs that are trained to eventually change size and form in real-time during inference, targeting to the smaller possible computational footprint. Results are provided for the optimal implementation on a few modern, high-end mobile computing platforms indicating a significant speed-up.\",\"PeriodicalId\":371385,\"journal\":{\"name\":\"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISA.2019.8900711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2019.8900711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种新的、激进的CNN动态剪枝方法,该方法通过对CNN结构和训练过程进行新的整体干预来实现,该方法通过学习利用和动态去除CNN结构的冗余容量来实现简约推理。我们的方法为开发cnn制定了一个系统的和数据驱动的方法,该方法经过训练,最终在推理过程中实时改变大小和形式,目标是尽可能减少计算足迹。在一些现代高端移动计算平台上提供了最佳实现的结果,表明显着的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Pruning of CNN networks
A new, radical CNN dynamic pruning approach is presented in this paper, achieved by a new holistic intervention on both the CNN architecture and the training procedure, which targets to the parsimonious inference by learning to exploit and dynamically remove the redundant capacity of a CNN architecture. Our approach formulates a systematic and data-driven method for developing CNNs that are trained to eventually change size and form in real-time during inference, targeting to the smaller possible computational footprint. Results are provided for the optimal implementation on a few modern, high-end mobile computing platforms indicating a significant speed-up.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信