M. A. Elhefny, M. Elmogy, Ahmed Abou El-Fetouh, F. Badria
{"title":"肥胖症相关癌症领域模糊OWL本体的开发","authors":"M. A. Elhefny, M. Elmogy, Ahmed Abou El-Fetouh, F. Badria","doi":"10.1504/IJMEI.2017.10002627","DOIUrl":null,"url":null,"abstract":"Obesity is associated with various diseases, particularly cardiovascular diseases, diabetes type 2, obstructive sleep apnea, certain types of cancer, osteoarthritis, and asthma. The knowledge of the obesity related cancer (ORC) domain is highly required to be represented in a structured and formalised shape. In this paper, we develop an ontology to represent ORC domain knowledge with its diseases, symptoms, diagnosis, and treatments. The proposed ontology is based on the Web Ontology Language (OWL 2) integrated with the fuzzy logic. The fuzzy developed ontology handles the overlapping concepts, ingesting more concepts, and copes with the linguistic domain variables, which were not possible using the regular ontologies. It allows the users to query the fuzzy Dl reasoner for element and answer them with the fuzzy ontology. By developing the fuzzy ORC ontology, it is expected to be a good practice for the ontologists and knowledge engineers.","PeriodicalId":193362,"journal":{"name":"Int. J. Medical Eng. Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Developing a fuzzy OWL ontology for obesity related cancer domain\",\"authors\":\"M. A. Elhefny, M. Elmogy, Ahmed Abou El-Fetouh, F. Badria\",\"doi\":\"10.1504/IJMEI.2017.10002627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obesity is associated with various diseases, particularly cardiovascular diseases, diabetes type 2, obstructive sleep apnea, certain types of cancer, osteoarthritis, and asthma. The knowledge of the obesity related cancer (ORC) domain is highly required to be represented in a structured and formalised shape. In this paper, we develop an ontology to represent ORC domain knowledge with its diseases, symptoms, diagnosis, and treatments. The proposed ontology is based on the Web Ontology Language (OWL 2) integrated with the fuzzy logic. The fuzzy developed ontology handles the overlapping concepts, ingesting more concepts, and copes with the linguistic domain variables, which were not possible using the regular ontologies. It allows the users to query the fuzzy Dl reasoner for element and answer them with the fuzzy ontology. By developing the fuzzy ORC ontology, it is expected to be a good practice for the ontologists and knowledge engineers.\",\"PeriodicalId\":193362,\"journal\":{\"name\":\"Int. J. Medical Eng. Informatics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Medical Eng. Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJMEI.2017.10002627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Medical Eng. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMEI.2017.10002627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Developing a fuzzy OWL ontology for obesity related cancer domain
Obesity is associated with various diseases, particularly cardiovascular diseases, diabetes type 2, obstructive sleep apnea, certain types of cancer, osteoarthritis, and asthma. The knowledge of the obesity related cancer (ORC) domain is highly required to be represented in a structured and formalised shape. In this paper, we develop an ontology to represent ORC domain knowledge with its diseases, symptoms, diagnosis, and treatments. The proposed ontology is based on the Web Ontology Language (OWL 2) integrated with the fuzzy logic. The fuzzy developed ontology handles the overlapping concepts, ingesting more concepts, and copes with the linguistic domain variables, which were not possible using the regular ontologies. It allows the users to query the fuzzy Dl reasoner for element and answer them with the fuzzy ontology. By developing the fuzzy ORC ontology, it is expected to be a good practice for the ontologists and knowledge engineers.