洞穴

A. Ali-Eldin, Chirag Goel, M. Jha, Bo Chen, Klara Nahrstedt, P. Shenoy
{"title":"洞穴","authors":"A. Ali-Eldin, Chirag Goel, M. Jha, Bo Chen, Klara Nahrstedt, P. Shenoy","doi":"10.1145/3534088.3534350","DOIUrl":null,"url":null,"abstract":"While 360° videos are gaining popularity due to the emergence of VR technologies, storing and streaming such videos can incur up to 20X higher overheads than traditional HD content. Edge caching, which involves caching and serving 360° videos from edge servers, is one possible approach for addressing these overheads. Prior work on 360° video caching has been based on using past history to cache tiles that are likely to be in a viewer's field of view and has not considered methods to intelligently share a limited edge cache across a set of videos that exhibit large variations in their popularity, size, content, and user abandonment patterns. Towards this end, we present CAVE, an adaptive edge caching framework that intelligently optimizes cache allocation across a set of videos taking into account video content, size, and popularity. Our experiments using realistic video workloads shows CAVE improves cache hit-rates, and thus network saving, by up to 50% over state-of-the-art approaches, while also scaling to up to two thousand videos per edge cache. In addition, in terms of scalability, our developed algorithm is embarrassingly parallel, allowing CAVE to scale beyond state-of-the-art solutions that typically do not support parallelization.","PeriodicalId":150454,"journal":{"name":"Proceedings of the 32nd Workshop on Network and Operating Systems Support for Digital Audio and Video","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CAVE\",\"authors\":\"A. Ali-Eldin, Chirag Goel, M. Jha, Bo Chen, Klara Nahrstedt, P. Shenoy\",\"doi\":\"10.1145/3534088.3534350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While 360° videos are gaining popularity due to the emergence of VR technologies, storing and streaming such videos can incur up to 20X higher overheads than traditional HD content. Edge caching, which involves caching and serving 360° videos from edge servers, is one possible approach for addressing these overheads. Prior work on 360° video caching has been based on using past history to cache tiles that are likely to be in a viewer's field of view and has not considered methods to intelligently share a limited edge cache across a set of videos that exhibit large variations in their popularity, size, content, and user abandonment patterns. Towards this end, we present CAVE, an adaptive edge caching framework that intelligently optimizes cache allocation across a set of videos taking into account video content, size, and popularity. Our experiments using realistic video workloads shows CAVE improves cache hit-rates, and thus network saving, by up to 50% over state-of-the-art approaches, while also scaling to up to two thousand videos per edge cache. In addition, in terms of scalability, our developed algorithm is embarrassingly parallel, allowing CAVE to scale beyond state-of-the-art solutions that typically do not support parallelization.\",\"PeriodicalId\":150454,\"journal\":{\"name\":\"Proceedings of the 32nd Workshop on Network and Operating Systems Support for Digital Audio and Video\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 32nd Workshop on Network and Operating Systems Support for Digital Audio and Video\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3534088.3534350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 32nd Workshop on Network and Operating Systems Support for Digital Audio and Video","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3534088.3534350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
CAVE
While 360° videos are gaining popularity due to the emergence of VR technologies, storing and streaming such videos can incur up to 20X higher overheads than traditional HD content. Edge caching, which involves caching and serving 360° videos from edge servers, is one possible approach for addressing these overheads. Prior work on 360° video caching has been based on using past history to cache tiles that are likely to be in a viewer's field of view and has not considered methods to intelligently share a limited edge cache across a set of videos that exhibit large variations in their popularity, size, content, and user abandonment patterns. Towards this end, we present CAVE, an adaptive edge caching framework that intelligently optimizes cache allocation across a set of videos taking into account video content, size, and popularity. Our experiments using realistic video workloads shows CAVE improves cache hit-rates, and thus network saving, by up to 50% over state-of-the-art approaches, while also scaling to up to two thousand videos per edge cache. In addition, in terms of scalability, our developed algorithm is embarrassingly parallel, allowing CAVE to scale beyond state-of-the-art solutions that typically do not support parallelization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信