基于离群值分离的机器学习货车维修时间预测方法

Josemar Coelho Felix, Vanessa Miranda Oliveira, Rodrigo Silva
{"title":"基于离群值分离的机器学习货车维修时间预测方法","authors":"Josemar Coelho Felix, Vanessa Miranda Oliveira, Rodrigo Silva","doi":"10.5753/kdmile.2022.227789","DOIUrl":null,"url":null,"abstract":"Time spent in wagons maintenance consumes a significant part of a rail freight company's budget. Thus, knowing how much time it is going to be spent in a maintenance procedure is critical for their management and planning. A common approach used to predict these time expenditures is the so called chronoanalysis. Despite their wide spread use, they may be inaccurate in some scenarios. Thus, in this paper, we try to replace it with machine leaning models which did not work at first. Then we propose a methodology that uses the chronoanalysis to divide the maintenance procedures into outliers and inliers. Hence, we were able to create independent models for each class. With this approach, the average mean absolute error was reduced from about 6 man-hour to a little above 2 man-hours. The best tested configuration presented an average mean absolute error of 0.417 man-hours compared with a 4.490 man-hours from the chronoanalysis.","PeriodicalId":417100,"journal":{"name":"Anais do X Symposium on Knowledge Discovery, Mining and Learning (KDMiLe 2022)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Machine Learning with an Inlier/Outlier Separation Approach for the Prediction of Wagon Maintenance Times\",\"authors\":\"Josemar Coelho Felix, Vanessa Miranda Oliveira, Rodrigo Silva\",\"doi\":\"10.5753/kdmile.2022.227789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time spent in wagons maintenance consumes a significant part of a rail freight company's budget. Thus, knowing how much time it is going to be spent in a maintenance procedure is critical for their management and planning. A common approach used to predict these time expenditures is the so called chronoanalysis. Despite their wide spread use, they may be inaccurate in some scenarios. Thus, in this paper, we try to replace it with machine leaning models which did not work at first. Then we propose a methodology that uses the chronoanalysis to divide the maintenance procedures into outliers and inliers. Hence, we were able to create independent models for each class. With this approach, the average mean absolute error was reduced from about 6 man-hour to a little above 2 man-hours. The best tested configuration presented an average mean absolute error of 0.417 man-hours compared with a 4.490 man-hours from the chronoanalysis.\",\"PeriodicalId\":417100,\"journal\":{\"name\":\"Anais do X Symposium on Knowledge Discovery, Mining and Learning (KDMiLe 2022)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do X Symposium on Knowledge Discovery, Mining and Learning (KDMiLe 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/kdmile.2022.227789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do X Symposium on Knowledge Discovery, Mining and Learning (KDMiLe 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/kdmile.2022.227789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

花在货车维修上的时间消耗了铁路货运公司预算的很大一部分。因此,了解将在维护过程中花费多少时间对于他们的管理和计划是至关重要的。用于预测这些时间支出的一种常用方法是所谓的时间分析。尽管它们被广泛使用,但在某些情况下它们可能是不准确的。因此,在本文中,我们试图用机器学习模型来代替它,而机器学习模型一开始并不起作用。然后,我们提出了一种使用时间分析法将维修过程划分为异常值和内线的方法。因此,我们能够为每个类创建独立的模型。通过这种方法,平均绝对误差从大约6个工时减少到略高于2个工时。最佳测试配置的平均绝对误差为0.417工时,而时间分析的平均绝对误差为4.490工时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Machine Learning with an Inlier/Outlier Separation Approach for the Prediction of Wagon Maintenance Times
Time spent in wagons maintenance consumes a significant part of a rail freight company's budget. Thus, knowing how much time it is going to be spent in a maintenance procedure is critical for their management and planning. A common approach used to predict these time expenditures is the so called chronoanalysis. Despite their wide spread use, they may be inaccurate in some scenarios. Thus, in this paper, we try to replace it with machine leaning models which did not work at first. Then we propose a methodology that uses the chronoanalysis to divide the maintenance procedures into outliers and inliers. Hence, we were able to create independent models for each class. With this approach, the average mean absolute error was reduced from about 6 man-hour to a little above 2 man-hours. The best tested configuration presented an average mean absolute error of 0.417 man-hours compared with a 4.490 man-hours from the chronoanalysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信