{"title":"使用适当未标记数据的投票NER系统","authors":"Asif Ekbal, Sivaji Bandyopadhyay","doi":"10.3115/1699705.1699749","DOIUrl":null,"url":null,"abstract":"This paper reports a voted Named Entity Recognition (NER) system with the use of appropriate unlabeled data. The proposed method is based on the classifiers such as Maximum Entropy (ME), Conditional Random Field (CRF) and Support Vector Machine (SVM) and has been tested for Bengali. The system makes use of the language independent features in the form of different contextual and orthographic word level features along with the language dependent features extracted from the Part of Speech (POS) tagger and gazetteers. Context patterns generated from the unlabeled data using an active learning method have been used as the features in each of the classifiers. A semi-supervised method has been used to describe the measures to automatically select effective documents and sentences from unlabeled data. Finally, the models have been combined together into a final system by weighted voting technique. Experimental results show the effectiveness of the proposed approach with the overall Recall, Precision, and F-Score values of 93.81%, 92.18% and 92.98%, respectively. We have shown how the language dependent features can improve the system performance.","PeriodicalId":262513,"journal":{"name":"NEWS@IJCNLP","volume":"284 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Voted NER System using Appropriate Unlabeled Data\",\"authors\":\"Asif Ekbal, Sivaji Bandyopadhyay\",\"doi\":\"10.3115/1699705.1699749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports a voted Named Entity Recognition (NER) system with the use of appropriate unlabeled data. The proposed method is based on the classifiers such as Maximum Entropy (ME), Conditional Random Field (CRF) and Support Vector Machine (SVM) and has been tested for Bengali. The system makes use of the language independent features in the form of different contextual and orthographic word level features along with the language dependent features extracted from the Part of Speech (POS) tagger and gazetteers. Context patterns generated from the unlabeled data using an active learning method have been used as the features in each of the classifiers. A semi-supervised method has been used to describe the measures to automatically select effective documents and sentences from unlabeled data. Finally, the models have been combined together into a final system by weighted voting technique. Experimental results show the effectiveness of the proposed approach with the overall Recall, Precision, and F-Score values of 93.81%, 92.18% and 92.98%, respectively. We have shown how the language dependent features can improve the system performance.\",\"PeriodicalId\":262513,\"journal\":{\"name\":\"NEWS@IJCNLP\",\"volume\":\"284 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NEWS@IJCNLP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1699705.1699749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NEWS@IJCNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1699705.1699749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42
摘要
本文报道了一种使用适当的未标记数据的投票命名实体识别(NER)系统。该方法基于最大熵(Maximum Entropy, ME)、条件随机场(Conditional Random Field, CRF)和支持向量机(Support Vector Machine, SVM)等分类器,并对孟加拉语进行了测试。该系统利用了从词性标注器和地名词典中提取的语言依赖特征,并以不同的上下文和正字法词级特征的形式提取了语言独立特征。使用主动学习方法从未标记数据生成的上下文模式被用作每个分类器中的特征。采用半监督方法描述了从未标注数据中自动选择有效文档和句子的方法。最后,通过加权投票技术将模型组合成最终的系统。实验结果表明,该方法的总体查全率、查准率和F-Score值分别为93.81%、92.18%和92.98%。我们已经展示了语言相关的特性是如何提高系统性能的。
This paper reports a voted Named Entity Recognition (NER) system with the use of appropriate unlabeled data. The proposed method is based on the classifiers such as Maximum Entropy (ME), Conditional Random Field (CRF) and Support Vector Machine (SVM) and has been tested for Bengali. The system makes use of the language independent features in the form of different contextual and orthographic word level features along with the language dependent features extracted from the Part of Speech (POS) tagger and gazetteers. Context patterns generated from the unlabeled data using an active learning method have been used as the features in each of the classifiers. A semi-supervised method has been used to describe the measures to automatically select effective documents and sentences from unlabeled data. Finally, the models have been combined together into a final system by weighted voting technique. Experimental results show the effectiveness of the proposed approach with the overall Recall, Precision, and F-Score values of 93.81%, 92.18% and 92.98%, respectively. We have shown how the language dependent features can improve the system performance.