IIoT环境下一种新型萤火虫群优化驱动的门控循环单元僵尸网络检测

T. Gaber, J. B. Awotunde, Chin-Shiuh Shieh
{"title":"IIoT环境下一种新型萤火虫群优化驱动的门控循环单元僵尸网络检测","authors":"T. Gaber, J. B. Awotunde, Chin-Shiuh Shieh","doi":"10.54216/jisiot.060103","DOIUrl":null,"url":null,"abstract":"Accurate and prompt detection of security attacks in the Industrial Internet of Things (IIoT) is important to reduce security risks. Since a massive number of IoT devices are placed over the globe and the quantity gets increased, an effective security solution is necessary. A botnet is a computer network comprising numerous hosts executing on standalone software. In this view, this article develops a novel Glowworm Swarm Optimization Driven Gated Recurrent Unit Enabled Botnet Detection (GSOGRU-BD) model in IIoT Environment. The presented GSOGRU-BD model intends to effectually identify the presence of botnet attacks in the IIoT environment. To do so, the GSOGRU-BD model initially pre-processed the input data to get rid of missing values. In addition, the GSOGRU-BD model involves the GRU model for the effective recognition and classification of botnets. Besides, the GSO algorithm is used for optimal hyperparameter tuning of the GRU model. Comparative experimental validation of the GSOGRU-BD model is tested using a benchmark dataset and the results reported the better outcomes for the GSOGRU-BD model.","PeriodicalId":122556,"journal":{"name":"Journal of Intelligent Systems and Internet of Things","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Glowworm Swarm Optimization Driven Gated Recurrent Unit Enabled Botnet Detection in IIoT Environment\",\"authors\":\"T. Gaber, J. B. Awotunde, Chin-Shiuh Shieh\",\"doi\":\"10.54216/jisiot.060103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate and prompt detection of security attacks in the Industrial Internet of Things (IIoT) is important to reduce security risks. Since a massive number of IoT devices are placed over the globe and the quantity gets increased, an effective security solution is necessary. A botnet is a computer network comprising numerous hosts executing on standalone software. In this view, this article develops a novel Glowworm Swarm Optimization Driven Gated Recurrent Unit Enabled Botnet Detection (GSOGRU-BD) model in IIoT Environment. The presented GSOGRU-BD model intends to effectually identify the presence of botnet attacks in the IIoT environment. To do so, the GSOGRU-BD model initially pre-processed the input data to get rid of missing values. In addition, the GSOGRU-BD model involves the GRU model for the effective recognition and classification of botnets. Besides, the GSO algorithm is used for optimal hyperparameter tuning of the GRU model. Comparative experimental validation of the GSOGRU-BD model is tested using a benchmark dataset and the results reported the better outcomes for the GSOGRU-BD model.\",\"PeriodicalId\":122556,\"journal\":{\"name\":\"Journal of Intelligent Systems and Internet of Things\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems and Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/jisiot.060103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems and Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/jisiot.060103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确、及时地检测工业物联网(IIoT)中的安全攻击,对于降低安全风险至关重要。由于全球范围内放置了大量物联网设备,并且数量不断增加,因此需要有效的安全解决方案。僵尸网络是由在独立软件上执行的许多主机组成的计算机网络。在此背景下,本文提出了一种新的IIoT环境下的萤火虫群优化驱动门控循环单元僵尸网络检测(GSOGRU-BD)模型。提出的GSOGRU-BD模型旨在有效识别工业物联网环境中存在的僵尸网络攻击。为此,GSOGRU-BD模型首先对输入数据进行预处理,以消除缺失值。此外,GSOGRU-BD模型还引入了GRU模型,对僵尸网络进行有效的识别和分类。此外,采用GSO算法对GRU模型进行超参数优化整定。使用基准数据集对GSOGRU-BD模型进行了对比实验验证,结果表明GSOGRU-BD模型效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Glowworm Swarm Optimization Driven Gated Recurrent Unit Enabled Botnet Detection in IIoT Environment
Accurate and prompt detection of security attacks in the Industrial Internet of Things (IIoT) is important to reduce security risks. Since a massive number of IoT devices are placed over the globe and the quantity gets increased, an effective security solution is necessary. A botnet is a computer network comprising numerous hosts executing on standalone software. In this view, this article develops a novel Glowworm Swarm Optimization Driven Gated Recurrent Unit Enabled Botnet Detection (GSOGRU-BD) model in IIoT Environment. The presented GSOGRU-BD model intends to effectually identify the presence of botnet attacks in the IIoT environment. To do so, the GSOGRU-BD model initially pre-processed the input data to get rid of missing values. In addition, the GSOGRU-BD model involves the GRU model for the effective recognition and classification of botnets. Besides, the GSO algorithm is used for optimal hyperparameter tuning of the GRU model. Comparative experimental validation of the GSOGRU-BD model is tested using a benchmark dataset and the results reported the better outcomes for the GSOGRU-BD model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信