基于sat的大步本地搜索

Morad Muslimany, M. Codish
{"title":"基于sat的大步本地搜索","authors":"Morad Muslimany, M. Codish","doi":"10.1109/SYNASC.2018.00029","DOIUrl":null,"url":null,"abstract":"This paper introduces a hybrid search method for optimization problems which combines techniques from Local Search methods and from SAT-based methods. At each iteration, the method performs a \"big-step\" move on a subset of variables of the current solution. This step is achieved by encoding the big-step itself as an optimization problem and solving it using a SAT (MaxSAT) solver such that the solution of the big-step results in a higher-quality solution to the entire problem. Experimentation illustrates a clear benefit of the approach over both methods: Local Search methods and SAT-based methods.","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"178 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAT-Based Big-Step Local Search\",\"authors\":\"Morad Muslimany, M. Codish\",\"doi\":\"10.1109/SYNASC.2018.00029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a hybrid search method for optimization problems which combines techniques from Local Search methods and from SAT-based methods. At each iteration, the method performs a \\\"big-step\\\" move on a subset of variables of the current solution. This step is achieved by encoding the big-step itself as an optimization problem and solving it using a SAT (MaxSAT) solver such that the solution of the big-step results in a higher-quality solution to the entire problem. Experimentation illustrates a clear benefit of the approach over both methods: Local Search methods and SAT-based methods.\",\"PeriodicalId\":273805,\"journal\":{\"name\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"178 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2018.00029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种结合局部搜索方法和基于sat方法的优化问题混合搜索方法。在每次迭代中,该方法对当前解决方案的变量子集执行“大步骤”移动。这一步是通过将大步骤本身编码为优化问题,并使用SAT (MaxSAT)求解器进行求解来实现的,这样大步骤的解会产生对整个问题的更高质量的解。实验表明,该方法明显优于两种方法:本地搜索方法和基于sat的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAT-Based Big-Step Local Search
This paper introduces a hybrid search method for optimization problems which combines techniques from Local Search methods and from SAT-based methods. At each iteration, the method performs a "big-step" move on a subset of variables of the current solution. This step is achieved by encoding the big-step itself as an optimization problem and solving it using a SAT (MaxSAT) solver such that the solution of the big-step results in a higher-quality solution to the entire problem. Experimentation illustrates a clear benefit of the approach over both methods: Local Search methods and SAT-based methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信