面向企业语料库专家搜索的层次语言模型

D. Petkova, W. Bruce Croft
{"title":"面向企业语料库专家搜索的层次语言模型","authors":"D. Petkova, W. Bruce Croft","doi":"10.1142/S0218213008003741","DOIUrl":null,"url":null,"abstract":"Enterprise corpora contain evidence of what employees work on and therefore can be used to automatically find experts on a given topic. We present a general approach for representing the knowledge of a potential expert as a mixture of language models from associated documents. First we retrieve documents given the expert's name using a generative probabilistic technique and weight the retrieved documents according to expert-specific posterior distribution. Then we model the expert indirectly through the set of associated documents, which allows us to exploit their underlying structure and complex language features. Experiments show that our method has excellent performance on TREC 2005 expert search task and that it effectively collects and combines evidence for expertise in a heterogeneous collection","PeriodicalId":169424,"journal":{"name":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"188","resultStr":"{\"title\":\"Hierarchical Language Models for Expert Finding in Enterprise Corpora\",\"authors\":\"D. Petkova, W. Bruce Croft\",\"doi\":\"10.1142/S0218213008003741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enterprise corpora contain evidence of what employees work on and therefore can be used to automatically find experts on a given topic. We present a general approach for representing the knowledge of a potential expert as a mixture of language models from associated documents. First we retrieve documents given the expert's name using a generative probabilistic technique and weight the retrieved documents according to expert-specific posterior distribution. Then we model the expert indirectly through the set of associated documents, which allows us to exploit their underlying structure and complex language features. Experiments show that our method has excellent performance on TREC 2005 expert search task and that it effectively collects and combines evidence for expertise in a heterogeneous collection\",\"PeriodicalId\":169424,\"journal\":{\"name\":\"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"188\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218213008003741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218213008003741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 188

摘要

企业语料库包含员工工作内容的证据,因此可以用来自动查找给定主题的专家。我们提出了一种通用的方法,将潜在专家的知识表示为来自相关文档的语言模型的混合。首先,我们使用生成概率技术检索给定专家姓名的文档,并根据专家特定后验分布对检索到的文档进行加权。然后,我们通过一组相关文档间接地对专家建模,这使我们能够利用它们的底层结构和复杂的语言特征。实验表明,该方法在TREC 2005专家搜索任务上具有优异的性能,能够有效地在异构数据集中收集和组合专家证据
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Language Models for Expert Finding in Enterprise Corpora
Enterprise corpora contain evidence of what employees work on and therefore can be used to automatically find experts on a given topic. We present a general approach for representing the knowledge of a potential expert as a mixture of language models from associated documents. First we retrieve documents given the expert's name using a generative probabilistic technique and weight the retrieved documents according to expert-specific posterior distribution. Then we model the expert indirectly through the set of associated documents, which allows us to exploit their underlying structure and complex language features. Experiments show that our method has excellent performance on TREC 2005 expert search task and that it effectively collects and combines evidence for expertise in a heterogeneous collection
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信