基于形态重构的城市机载LiDAR数据自动车辆提取

W. Yao, S. Hinz, Uwe Stilla
{"title":"基于形态重构的城市机载LiDAR数据自动车辆提取","authors":"W. Yao, S. Hinz, Uwe Stilla","doi":"10.1109/PRRS.2008.4783167","DOIUrl":null,"url":null,"abstract":"In this paper, we address issues in traffic monitoring of urban areas using airborne LiDAR data. Our aim in this paper is to extract individual vehicles from common LiDAR data of urban areas, based on which the dynamical status of vehicles and other traffic-related parameters can be derived. A context-guiding bottom-up processing strategy is developed to accomplish the task. Ground level separation is first used to exclude the irrelevant objects and provide the ldquoRegion of Interestrdquo. The marker-controlled watershed transformation assisted by morphological reconstruction is then performed on the gridded and filled raster of ground level points to delineate the single vehicles. The evaluation of experimental results has shown that most vehicles can be correctly detected, whose delineated contours are accurate.","PeriodicalId":315798,"journal":{"name":"2008 IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS 2008)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Automatic vehicle extraction from airborne LiDAR data of urban areas using morphological reconstruction\",\"authors\":\"W. Yao, S. Hinz, Uwe Stilla\",\"doi\":\"10.1109/PRRS.2008.4783167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address issues in traffic monitoring of urban areas using airborne LiDAR data. Our aim in this paper is to extract individual vehicles from common LiDAR data of urban areas, based on which the dynamical status of vehicles and other traffic-related parameters can be derived. A context-guiding bottom-up processing strategy is developed to accomplish the task. Ground level separation is first used to exclude the irrelevant objects and provide the ldquoRegion of Interestrdquo. The marker-controlled watershed transformation assisted by morphological reconstruction is then performed on the gridded and filled raster of ground level points to delineate the single vehicles. The evaluation of experimental results has shown that most vehicles can be correctly detected, whose delineated contours are accurate.\",\"PeriodicalId\":315798,\"journal\":{\"name\":\"2008 IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS 2008)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRRS.2008.4783167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRRS.2008.4783167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

在本文中,我们利用机载激光雷达数据解决了城市地区交通监控中的问题。本文的目的是从城市地区的公共LiDAR数据中提取单个车辆,并以此为基础推导车辆的动态状态和其他交通相关参数。开发了一种上下文导向的自下而上处理策略来完成任务。首先利用地面分离来排除不相关的目标,并提供最小感兴趣区域。然后在地面点的网格化和填充栅格上进行标记控制的分水岭变换,并辅以形态重建来圈定单个车辆。对实验结果的评价表明,大多数车辆都能被正确地检测出来,其轮廓线是准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic vehicle extraction from airborne LiDAR data of urban areas using morphological reconstruction
In this paper, we address issues in traffic monitoring of urban areas using airborne LiDAR data. Our aim in this paper is to extract individual vehicles from common LiDAR data of urban areas, based on which the dynamical status of vehicles and other traffic-related parameters can be derived. A context-guiding bottom-up processing strategy is developed to accomplish the task. Ground level separation is first used to exclude the irrelevant objects and provide the ldquoRegion of Interestrdquo. The marker-controlled watershed transformation assisted by morphological reconstruction is then performed on the gridded and filled raster of ground level points to delineate the single vehicles. The evaluation of experimental results has shown that most vehicles can be correctly detected, whose delineated contours are accurate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信