基于XLNet微调模型的假新闻检测

Ashok Kumar J, Tina Esther Trueman, E. Cambria
{"title":"基于XLNet微调模型的假新闻检测","authors":"Ashok Kumar J, Tina Esther Trueman, E. Cambria","doi":"10.1109/iccica52458.2021.9697269","DOIUrl":null,"url":null,"abstract":"In recent years, the traditional way of getting news from a Television, news paper, or national newscast is gone. Today, online social media provides the fastest news content for people. This, however, brings about the problem of fake news. In fact, fake news detection is one of the challenging tasks in natural language processing to differentiate between real (or true) and fake (or false) news content. In this paper, we propose an XLNet fine-tuning model to predict fake news in a multi-class and binary class problem. Our results show that the proposed XLNet model comparatively achieves a better result than the existing state-of-the-art models.","PeriodicalId":327193,"journal":{"name":"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Fake News Detection Using XLNet Fine-Tuning Model\",\"authors\":\"Ashok Kumar J, Tina Esther Trueman, E. Cambria\",\"doi\":\"10.1109/iccica52458.2021.9697269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the traditional way of getting news from a Television, news paper, or national newscast is gone. Today, online social media provides the fastest news content for people. This, however, brings about the problem of fake news. In fact, fake news detection is one of the challenging tasks in natural language processing to differentiate between real (or true) and fake (or false) news content. In this paper, we propose an XLNet fine-tuning model to predict fake news in a multi-class and binary class problem. Our results show that the proposed XLNet model comparatively achieves a better result than the existing state-of-the-art models.\",\"PeriodicalId\":327193,\"journal\":{\"name\":\"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccica52458.2021.9697269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccica52458.2021.9697269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

近年来,从电视、报纸或全国新闻广播中获取新闻的传统方式已经消失了。今天,在线社交媒体为人们提供了最快的新闻内容。然而,这带来了假新闻的问题。事实上,假新闻检测是自然语言处理中区分真实(或真实)和虚假(或虚假)新闻内容的具有挑战性的任务之一。在本文中,我们提出了一个XLNet微调模型来预测多类和二元类问题中的假新闻。我们的结果表明,所提出的XLNet模型相对于现有的最先进模型取得了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fake News Detection Using XLNet Fine-Tuning Model
In recent years, the traditional way of getting news from a Television, news paper, or national newscast is gone. Today, online social media provides the fastest news content for people. This, however, brings about the problem of fake news. In fact, fake news detection is one of the challenging tasks in natural language processing to differentiate between real (or true) and fake (or false) news content. In this paper, we propose an XLNet fine-tuning model to predict fake news in a multi-class and binary class problem. Our results show that the proposed XLNet model comparatively achieves a better result than the existing state-of-the-art models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信