一维有向小世界网络中的多数投票模型

M. V. A. Cícera, F. Lima
{"title":"一维有向小世界网络中的多数投票模型","authors":"M. V. A. Cícera, F. Lima","doi":"10.15406/paij.2018.02.00140","DOIUrl":null,"url":null,"abstract":"In 1992 Oliveira9 proposed the a non-equilibrium model known as MVM which disobeys the detailed balance. The update of the MVM follows a Markov sequence of stochastic dynamics with local rules and with up-down symmetry. In 2D, on a square lattice, the MVM presents a continuous phase transition with critical exponents identical9 of the Ising model10. Sousa11 and Brenda12 studied the Ising model and MVM on DSW random lattices, respectively. The exponents obtained in both models are identical and in agreement with the conjecture suggested by Grinstein et al.1","PeriodicalId":137635,"journal":{"name":"Physics & Astronomy International Journal","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Majority-vote model in one-dimensional on directed small-world networks\",\"authors\":\"M. V. A. Cícera, F. Lima\",\"doi\":\"10.15406/paij.2018.02.00140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1992 Oliveira9 proposed the a non-equilibrium model known as MVM which disobeys the detailed balance. The update of the MVM follows a Markov sequence of stochastic dynamics with local rules and with up-down symmetry. In 2D, on a square lattice, the MVM presents a continuous phase transition with critical exponents identical9 of the Ising model10. Sousa11 and Brenda12 studied the Ising model and MVM on DSW random lattices, respectively. The exponents obtained in both models are identical and in agreement with the conjecture suggested by Grinstein et al.1\",\"PeriodicalId\":137635,\"journal\":{\"name\":\"Physics & Astronomy International Journal\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics & Astronomy International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15406/paij.2018.02.00140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics & Astronomy International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/paij.2018.02.00140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

1992年,Oliveira9提出了一个不服从详细平衡的非平衡模型MVM。MVM的更新遵循具有局部规则和上下对称的随机动力学马尔可夫序列。在二维中,在方形晶格上,MVM呈现出一个连续的相变,其临界指数与Ising模型相同。Sousa11和Brenda12分别研究了DSW随机格上的Ising模型和MVM。两种模型得到的指数是相同的,并且与Grinstein等人提出的猜想一致
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Majority-vote model in one-dimensional on directed small-world networks
In 1992 Oliveira9 proposed the a non-equilibrium model known as MVM which disobeys the detailed balance. The update of the MVM follows a Markov sequence of stochastic dynamics with local rules and with up-down symmetry. In 2D, on a square lattice, the MVM presents a continuous phase transition with critical exponents identical9 of the Ising model10. Sousa11 and Brenda12 studied the Ising model and MVM on DSW random lattices, respectively. The exponents obtained in both models are identical and in agreement with the conjecture suggested by Grinstein et al.1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信