Stefano Sebastio, M. Amoretti, Alberto Lluch-Lafuente
{"title":"志愿云中协同任务执行的计算领域框架","authors":"Stefano Sebastio, M. Amoretti, Alberto Lluch-Lafuente","doi":"10.1145/2593929.2593943","DOIUrl":null,"url":null,"abstract":"The increasing diffusion of cloud technologies offers new opportunities for distributed and collaborative computing. Volunteer clouds are a prominent example, where participants join and leave the platform and collaborate by sharing computational resources. The high complexity, dynamism and unpredictability of such scenarios call for decentralized self-* approaches. We present in this paper a framework for the design and evaluation of self-adaptive collaborative task execution strategies in volunteer clouds. As a byproduct, we propose a novel strategy based on the Ant Colony Optimization paradigm, that we validate through simulation-based statistical analysis over Google cluster data.","PeriodicalId":168314,"journal":{"name":"International Symposium on Software Engineering for Adaptive and Self-Managing Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"A computational field framework for collaborative task execution in volunteer clouds\",\"authors\":\"Stefano Sebastio, M. Amoretti, Alberto Lluch-Lafuente\",\"doi\":\"10.1145/2593929.2593943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing diffusion of cloud technologies offers new opportunities for distributed and collaborative computing. Volunteer clouds are a prominent example, where participants join and leave the platform and collaborate by sharing computational resources. The high complexity, dynamism and unpredictability of such scenarios call for decentralized self-* approaches. We present in this paper a framework for the design and evaluation of self-adaptive collaborative task execution strategies in volunteer clouds. As a byproduct, we propose a novel strategy based on the Ant Colony Optimization paradigm, that we validate through simulation-based statistical analysis over Google cluster data.\",\"PeriodicalId\":168314,\"journal\":{\"name\":\"International Symposium on Software Engineering for Adaptive and Self-Managing Systems\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Software Engineering for Adaptive and Self-Managing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2593929.2593943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Software Engineering for Adaptive and Self-Managing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593929.2593943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A computational field framework for collaborative task execution in volunteer clouds
The increasing diffusion of cloud technologies offers new opportunities for distributed and collaborative computing. Volunteer clouds are a prominent example, where participants join and leave the platform and collaborate by sharing computational resources. The high complexity, dynamism and unpredictability of such scenarios call for decentralized self-* approaches. We present in this paper a framework for the design and evaluation of self-adaptive collaborative task execution strategies in volunteer clouds. As a byproduct, we propose a novel strategy based on the Ant Colony Optimization paradigm, that we validate through simulation-based statistical analysis over Google cluster data.