局部预测的偏差

Edward P. Herbst, B. Johannsen
{"title":"局部预测的偏差","authors":"Edward P. Herbst, B. Johannsen","doi":"10.17016/feds.2020.010","DOIUrl":null,"url":null,"abstract":"Local projections (LPs) are a popular tool in macroeconomic research. We show that LPs are often used with very small samples in the time dimension. Consequently, LP point estimates can be severely biased. We derive simple expressions for this bias and propose a way to bias-correct LPs. Small sample bias can also lead autocorrelation-robust standard errors to dramatically understate sampling uncertainty. We argue they should be avoided in LPs like the ones we study. Using identified monetary policy shocks, we demonstrate that the bias in point estimates can be economically meaningful and the bias in standard errors can affect inference.","PeriodicalId":278071,"journal":{"name":"Board of Governors: Finance & Economics Discussion Series (Topic)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Bias in Local Projections\",\"authors\":\"Edward P. Herbst, B. Johannsen\",\"doi\":\"10.17016/feds.2020.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local projections (LPs) are a popular tool in macroeconomic research. We show that LPs are often used with very small samples in the time dimension. Consequently, LP point estimates can be severely biased. We derive simple expressions for this bias and propose a way to bias-correct LPs. Small sample bias can also lead autocorrelation-robust standard errors to dramatically understate sampling uncertainty. We argue they should be avoided in LPs like the ones we study. Using identified monetary policy shocks, we demonstrate that the bias in point estimates can be economically meaningful and the bias in standard errors can affect inference.\",\"PeriodicalId\":278071,\"journal\":{\"name\":\"Board of Governors: Finance & Economics Discussion Series (Topic)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Board of Governors: Finance & Economics Discussion Series (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17016/feds.2020.010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Board of Governors: Finance & Economics Discussion Series (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17016/feds.2020.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

局部预测(lp)是宏观经济研究中的一种流行工具。我们发现lp通常用于时间维度非常小的样品。因此,LP点估计可能存在严重偏差。我们推导了这种偏差的简单表达式,并提出了一种偏差校正lp的方法。小样本偏差也会导致自相关鲁棒标准误差显著低估采样不确定性。我们认为,在我们研究的有限合伙人中,应该避免出现这种情况。使用确定的货币政策冲击,我们证明了点估计的偏差在经济上是有意义的,而标准误差的偏差会影响推断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bias in Local Projections
Local projections (LPs) are a popular tool in macroeconomic research. We show that LPs are often used with very small samples in the time dimension. Consequently, LP point estimates can be severely biased. We derive simple expressions for this bias and propose a way to bias-correct LPs. Small sample bias can also lead autocorrelation-robust standard errors to dramatically understate sampling uncertainty. We argue they should be avoided in LPs like the ones we study. Using identified monetary policy shocks, we demonstrate that the bias in point estimates can be economically meaningful and the bias in standard errors can affect inference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信