基于体裁的音乐录音聚类

Wei-Ho Tsai, Duo-Fu Bao
{"title":"基于体裁的音乐录音聚类","authors":"Wei-Ho Tsai, Duo-Fu Bao","doi":"10.1109/ICISA.2010.5480365","DOIUrl":null,"url":null,"abstract":"Existing systems for automatic genre classification follows a supervised framework that extracts genre-specific information from manually-labeled music data and then identifies unknown music data. However, such systems may not be suitable for personal music management, because manually labeling music based on individually-defined genres can be labor intensive and subject to inconsistence from time to time. This work studies an unsupervised paradigm for music genre classification. It is aimed to partition a collection of unknown music recordings into several clusters such that each cluster contains recordings in only one genre, and different clusters represent different genres. This enables users to organize their personal music database without needing specific knowledge about genre. We investigate how to measure the genre similarities between music recordings and estimate the genre population size of a music collection. Our experiment results show the feasibility of clustering music recordings by genre.","PeriodicalId":313762,"journal":{"name":"2010 International Conference on Information Science and Applications","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Clustering Music Recordings Based on Genres\",\"authors\":\"Wei-Ho Tsai, Duo-Fu Bao\",\"doi\":\"10.1109/ICISA.2010.5480365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing systems for automatic genre classification follows a supervised framework that extracts genre-specific information from manually-labeled music data and then identifies unknown music data. However, such systems may not be suitable for personal music management, because manually labeling music based on individually-defined genres can be labor intensive and subject to inconsistence from time to time. This work studies an unsupervised paradigm for music genre classification. It is aimed to partition a collection of unknown music recordings into several clusters such that each cluster contains recordings in only one genre, and different clusters represent different genres. This enables users to organize their personal music database without needing specific knowledge about genre. We investigate how to measure the genre similarities between music recordings and estimate the genre population size of a music collection. Our experiment results show the feasibility of clustering music recordings by genre.\",\"PeriodicalId\":313762,\"journal\":{\"name\":\"2010 International Conference on Information Science and Applications\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Information Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISA.2010.5480365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Information Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISA.2010.5480365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

现有的自动类型分类系统遵循一个有监督的框架,从手动标记的音乐数据中提取特定类型的信息,然后识别未知的音乐数据。然而,这样的系统可能不适合个人音乐管理,因为基于个人定义的流派手动标记音乐可能是劳动密集型的,并且会不时出现不一致的情况。本文研究了一种无监督的音乐类型分类范式。它的目的是将一组未知的音乐录音分成几个簇,这样每个簇只包含一种类型的录音,不同的簇代表不同的类型。这使得用户能够组织他们的个人音乐数据库,而不需要特定的音乐类型知识。我们研究了如何测量音乐录音之间的类型相似性,并估计音乐收藏的类型人口规模。实验结果表明,按类型对音乐录音进行聚类是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering Music Recordings Based on Genres
Existing systems for automatic genre classification follows a supervised framework that extracts genre-specific information from manually-labeled music data and then identifies unknown music data. However, such systems may not be suitable for personal music management, because manually labeling music based on individually-defined genres can be labor intensive and subject to inconsistence from time to time. This work studies an unsupervised paradigm for music genre classification. It is aimed to partition a collection of unknown music recordings into several clusters such that each cluster contains recordings in only one genre, and different clusters represent different genres. This enables users to organize their personal music database without needing specific knowledge about genre. We investigate how to measure the genre similarities between music recordings and estimate the genre population size of a music collection. Our experiment results show the feasibility of clustering music recordings by genre.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信