{"title":"测试化学反应网络的框架","authors":"Michael C. Gerten","doi":"10.1145/3551349.3559562","DOIUrl":null,"url":null,"abstract":"The use of non-traditional computing devices is growing rapidly. One paradigm of interest is chemical reaction networks (CRNs) which can model and use chemical interactions for computation. These CRNs are used to develop programs at the nanoscale for applications such as intelligent drug delivery. In practice, these programs are developed in simulation environments, and then compiled into physical systems. A challenge when designing CRNs for computation is the lack of techniques to verify and validate correctness. In this work, we adapt software testing and repair techniques for use in this domain. In initial work, we designed a testing framework to handle the challenges presented by CRN programs; this includes distributed computation and stochastic behavior. We extended this framework to implement automated program repair of CRN models and automated test generation via program invariants. For future work, we will develop a notion of fault localization for these programs, develop a theory of mutation generation, and address issues regarding flakiness present in this computing paradigm.","PeriodicalId":197939,"journal":{"name":"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Framework for Testing Chemical Reaction Networks\",\"authors\":\"Michael C. Gerten\",\"doi\":\"10.1145/3551349.3559562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of non-traditional computing devices is growing rapidly. One paradigm of interest is chemical reaction networks (CRNs) which can model and use chemical interactions for computation. These CRNs are used to develop programs at the nanoscale for applications such as intelligent drug delivery. In practice, these programs are developed in simulation environments, and then compiled into physical systems. A challenge when designing CRNs for computation is the lack of techniques to verify and validate correctness. In this work, we adapt software testing and repair techniques for use in this domain. In initial work, we designed a testing framework to handle the challenges presented by CRN programs; this includes distributed computation and stochastic behavior. We extended this framework to implement automated program repair of CRN models and automated test generation via program invariants. For future work, we will develop a notion of fault localization for these programs, develop a theory of mutation generation, and address issues regarding flakiness present in this computing paradigm.\",\"PeriodicalId\":197939,\"journal\":{\"name\":\"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3551349.3559562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3551349.3559562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Framework for Testing Chemical Reaction Networks
The use of non-traditional computing devices is growing rapidly. One paradigm of interest is chemical reaction networks (CRNs) which can model and use chemical interactions for computation. These CRNs are used to develop programs at the nanoscale for applications such as intelligent drug delivery. In practice, these programs are developed in simulation environments, and then compiled into physical systems. A challenge when designing CRNs for computation is the lack of techniques to verify and validate correctness. In this work, we adapt software testing and repair techniques for use in this domain. In initial work, we designed a testing framework to handle the challenges presented by CRN programs; this includes distributed computation and stochastic behavior. We extended this framework to implement automated program repair of CRN models and automated test generation via program invariants. For future work, we will develop a notion of fault localization for these programs, develop a theory of mutation generation, and address issues regarding flakiness present in this computing paradigm.