{"title":"基于回溯代价的自适应输入和状态估计的未知加速度机动目标跟踪","authors":"Liang Han, Antai Xie, Z. Ren, D. Bernstein","doi":"10.1109/CHICC.2015.7260422","DOIUrl":null,"url":null,"abstract":"In this paper, we apply retrospective-cost-based adaptive input and state estimation (RCAISE) to maneuvering target tracking. Conventional methods assume that the maneuvering process is a random process. In contrast, RCAISE uses an adaptive input estimator to estimate the unknown maneuvering acceleration. This estimator optimizes the retrospective performance to drive the estimated maneuvering acceleration to approximate the actual maneuvering acceleration. Using the maneuvering target tracking model, a state estimator is constructed to provide the optimal estimate of the state. Numerical simulations illustrate the effectiveness and feasibility of RCAISE with comparison to the conventional methods.","PeriodicalId":421276,"journal":{"name":"2015 34th Chinese Control Conference (CCC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Maneuvering target tracking with unknown acceleration using retrospective-cost-based adaptive input and state estimation\",\"authors\":\"Liang Han, Antai Xie, Z. Ren, D. Bernstein\",\"doi\":\"10.1109/CHICC.2015.7260422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we apply retrospective-cost-based adaptive input and state estimation (RCAISE) to maneuvering target tracking. Conventional methods assume that the maneuvering process is a random process. In contrast, RCAISE uses an adaptive input estimator to estimate the unknown maneuvering acceleration. This estimator optimizes the retrospective performance to drive the estimated maneuvering acceleration to approximate the actual maneuvering acceleration. Using the maneuvering target tracking model, a state estimator is constructed to provide the optimal estimate of the state. Numerical simulations illustrate the effectiveness and feasibility of RCAISE with comparison to the conventional methods.\",\"PeriodicalId\":421276,\"journal\":{\"name\":\"2015 34th Chinese Control Conference (CCC)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 34th Chinese Control Conference (CCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CHICC.2015.7260422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 34th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHICC.2015.7260422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Maneuvering target tracking with unknown acceleration using retrospective-cost-based adaptive input and state estimation
In this paper, we apply retrospective-cost-based adaptive input and state estimation (RCAISE) to maneuvering target tracking. Conventional methods assume that the maneuvering process is a random process. In contrast, RCAISE uses an adaptive input estimator to estimate the unknown maneuvering acceleration. This estimator optimizes the retrospective performance to drive the estimated maneuvering acceleration to approximate the actual maneuvering acceleration. Using the maneuvering target tracking model, a state estimator is constructed to provide the optimal estimate of the state. Numerical simulations illustrate the effectiveness and feasibility of RCAISE with comparison to the conventional methods.